Wang Shuhe, He Linshu, Zhang Yuzhuet al. Flight vehicles multidisciplinary design optimization software system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(01): 51-55. (in Chinese)
Citation: ZHANG Qun-feng, Lü Zhi-yong, QIN Yan-huaet al. Research of Notchback Automobile Wake Structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(6): 688-691. (in Chinese)

Research of Notchback Automobile Wake Structure

  • Received Date: 31 May 2001
  • Publish Date: 30 Jun 2002
  • The aerodynamical drag of a automobile directly influences its fuel comsumption. For a notchback automobile, its aerodynamical drag relateded with the rear shape amounts to nearly 50 percent of the total aerodynamical drag. Therefore, it is important to make the wake structure clear for designing automobile with good aerodynamic characteristics. The wake structure of notchback automobile and the influence of the rear shape on the structure were analyzed. The result is quite striking for designing new type notchback automobile with good aerodynamic characteristics.

     

  • [1] Hcho W. Aerodynamics of road vehicle[M]. Butterworth:Society of Automotive Engineers Inc,1998.174~175. [2]Saha A K, Biswas G, Muralidhar K. Numerical study of the turbulent unsteady wake behind a partially enclosed square cylinder using RANS[J].Computer Methods in Applied Mechanics and Engineering,1999,178:323~341.
  • Relative Articles

    [1]WEN Y F,ZHANG W Q,HAO S S. Investigation on unsteady flow characteristics of a supersonic inlet with exit blocked[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):772-783 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0142.
    [2]LIU J T,GONG X Q,ZHOU N C,et al. Equipment interference and correction method in dynamic pressure field verification of low-speed wind tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1651-1661 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0310.
    [3]ZHANG P H,ZHOU G Y,SHEN Y Y,et al. Simulation of parallel separation characteristics using NNW-FlowStar software[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1620-1628 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0275.
    [4]LEI C H,YANG C,SONG C,et al. Rolling maneuver load alleviation of aircraft with continuously variable-camber trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3172-3182 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0772.
    [5]LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693.
    [6]LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813.
    [7]ZHOU Guocheng, SUN Yifeng, BAO Anyu, DING Cunwei. Experimental research of large scaled civil aircraft model noise in wind tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0660
    [8]YUAN Kaihua, ZHANG Zhuoge, ZHA Jun, CHENG Meng, JI Hongli, LIU Kai, TIAN Haitao. WIND TUNNEL TEST FOR AEROELASTIC DYNAMIC RESPONSE SUPRESSION OF SUPERSONIC PANEL[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0602
    [9]ZHANG Y M,DAI Y T,WEI R K,et al. Experiment on dynamic response alleviation of a wing with variable-camber flexible trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3239-3249 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0761.
    [10]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [11]ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341.
    [12]XIE C C,ZHU L P,MENG Y,et al. Design of adaptive deformation wing control system based on system identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2761-2770 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0717.
    [13]WANG W Z,ZHAO R,GUI Y T,et al. Stabilization effects of carbon foam surface on hypersonic boundary layers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2741-2749 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0703.
    [14]HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335.
    [15]WANG G H,YAN Z J,JI C,et al. Study on buffeting test of large diameter fairing launch vehicles selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3230-3236 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0106.
    [16]ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0609.
    [17]LI Q,WANG Y K,JIA Y H. Test study on wing rock in Herbst maneuver[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1083-1098 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0375.
    [18]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [19]ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790.
    [20]WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-0605101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 23.0 %FULLTEXT: 23.0 %META: 76.1 %META: 76.1 %PDF: 0.9 %PDF: 0.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.3 %其他: 4.3 %其他: 0.6 %其他: 0.6 %China: 0.6 %China: 0.6 %上海: 0.6 %上海: 0.6 %北京: 2.3 %北京: 2.3 %南京: 0.3 %南京: 0.3 %同奈: 0.3 %同奈: 0.3 %张家口: 1.4 %张家口: 1.4 %武汉: 0.1 %武汉: 0.1 %江门: 0.1 %江门: 0.1 %深圳: 9.5 %深圳: 9.5 %漯河: 0.1 %漯河: 0.1 %石家庄: 0.3 %石家庄: 0.3 %芒廷维尤: 10.1 %芒廷维尤: 10.1 %芝加哥: 0.3 %芝加哥: 0.3 %西宁: 68.6 %西宁: 68.6 %西安: 0.1 %西安: 0.1 %郑州: 0.4 %郑州: 0.4 %其他其他China上海北京南京同奈张家口武汉江门深圳漯河石家庄芒廷维尤芝加哥西宁西安郑州

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3075) PDF downloads(974) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return