LIU Jiu-wen. Designing Simulation of RF Low Noise Amplifier[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(3): 259-262. (in Chinese)
Citation: ZHAO Xiao-hu, SHEN Zhi-gang, WANG Zhong-tao, et al. Experimental Investigations of Atomic Oxygen, Temperature, Ultraviolet Radiation Effects on a Spacecraft Material-Kapton[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(6): 670-673. (in Chinese)

Experimental Investigations of Atomic Oxygen, Temperature, Ultraviolet Radiation Effects on a Spacecraft Material-Kapton

  • Received Date: 03 Apr 2000
  • Publish Date: 30 Jun 2001
  • Experimental investigations of atomic oxygen, temperature rise, ultraviolet radiation effects on Kapton, a spacecraft material in common use, were conducted using atomic oxygen effects ground-based simulation facility. The samples aspect, mass and surface morphology before and after experiment was compared in this thesis. Reaction characteristics of Kapton in the facility and influence rule of temperature change as well as ultraviolet radiation on atomic oxygen effects of Kapton were acquired. Optical properties, such as reflectivity and transmissivity, before and after experiments were measured and compared.

     

  • [1] Shimazaki T. Shuttle glow emissions due to radiation of highly vibrationally excited NO molecules produced by surface reflection. AIAA 85-6098,1985. [2] Coulter D R, Liang R H. O-Atoms degradation mechanisms of materials. N87-26178,1987. [3] Leger L J. Low earth orbit atomic oxygen effects on surfaces. AIAA 84-0548,1984. [4] Leger L J, Mason B S. Review of LEO flight experiment. N87-26174,1987. [5] Lee A L,Rhoads G D. Prediction of thermal control surface degradation due to atomic oxygen interaction. AIAA-85-1065,1985. [6] Groh K K,Banks B A. Atomic-oxygen undercutting of long duration exposure facility aluminized-Kapton multilayer insulation[J]. J of Spacecraft and Rockets,1994,31(4):656~664. [7] Stidham C R, Stueber T J, Banks B A, et al. Low earth orbit atomic oxygen environmental simulation facility for space materials evaluation. N93-27266,1993. [8] Silverman E M. Spacecraft environmental effects on spacecraft:LEO materials selection guide. N96-10860,1996. [9] Groh K K, Smith D C. Investigation of Teflon FEP embrittlement on spacecraft in low earth orbit. Proceeding of the 7th International Symposium on "Materials in Space Environment". Toulouse, France. ESA SP-399,1997. 255~266. [10] 沈志刚, 赵小虎, 王忠涛,等.灯丝放电磁场约束型原子氧效应地面模拟设备[J].航空学报,2000,21(5):425~430. [11] Chalykh A E, Matveev V V, Nikiforov A P (Russian), et al. About mechanism of roughness development on polyimide films during anisotropic etching by fast atomic oxygen. Proceeding of the 7th International Symposium on "Materials in Space Environment". Toulouse, France ESA SP-399,1997. 243~246. [12] Rutledge S K,Banks B A. A technique for synergistic atomic oxygen and vacuum ultraviolet radiation durability evaluation of materials for use in LEO. N96-29654,1996. [13] Visentine J T, Leger L J, Kuminecz J F,et al. STS-8 atomic oxygen effects experiment. AIAA-85-0415,1985. [14] Leger L J.Oxygen atom reaction with shuttle material at orbital altitudes-data and experiment status. AIAA-83-0073,1983. [15] Dever J A, Groh K K, Stidham C R, et al. Simulation of the synergistic low earth orbit effects of vacuum thermal cycling, vacuum UV radiation and atomic oxygen. N93-15595, 1993.
  • Relative Articles

    [1]JI L B,ZHU Y,CUI T S,et al. LPI radar signal recognition based on time-frequency reassignment algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1324-1331 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0218.
    [2]LI S T,JIN X P,SUN J,et al. LPI radar signal recognition based on high-order time-frequency spectrum features[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):314-320 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0993.
    [3]TANG Jingmin, HU Cheng, SONG Yaolian, YU Guicai. NOMA-Based Joint Optimization of Trajectory and Resources for UAV-Enable Integrated Sensing and Communication[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0275
    [4]WANG Ruizheng, LI Shiqiang. Radar coherent integration method for high-speed maneuvering targets based on sequence reversal[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0268
    [5]WANG Xiaoliang, WANG Congsheng, SHI Yuxiang, HE Weikun. The Classification Method of Multirotor Drones and Flying Birds under Low Signal-to-Noise Ratio for Radar[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0585
    [6]WANG J D,WANG X,TIAN Y R,et al. Threat assessment of radar radiation sources based on behavioral characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3196-3207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0848.
    [7]WANG Dequan, ZHAO Yuxuan, YUAN Xiangyue, WANG Qingchun, CHEN Zhongjia. Design and simulation of large composite material curing furnace based on flow field uniformity[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0370
    [8]WANG F,YANG P Y,YANG D K. Theories and simulations of river boundary and level measurement using GNSS-I/MR[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1877-1887 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0529.
    [9]WANG X Q,LAI F L,ZHAO C L. Reconfiguration control and motion simulation of tilt-rotor aircraft with multilinks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1523-1531 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0522.
    [10]CHEN Xi, XIE Shuguo, WEI Mengyuan, LI Yuanyuan. Simulation modeling methodology for broadband conducted immunity quantization of analog and analog-digital hybrid chips[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0193
    [11]ZHANG Zhangyong, SUN Yuhua, CHEN Daming, GUO Zhihao. A method for suppressing conducted interference in parallel drive systems based on modulated wave phase shift[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0342
    [12]XING H X,XING Q H. An optimal scheduling model for scintillation detection of netted radars[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3884-3893 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0924.
    [13]WANG Weijie, GUO Dinghun, LI Xiangyu, GENG Yixuan, QUAN Long. Typical Fault Mechanism Modeling and Simulation of Insulin Pump Sets[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0394
    [14]ZHANG D B,WANG L X,LI C. Simulation analysis of reduction effect of symmetrical winding method for multi-polar fiber ring on Shupe error[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1715-1721 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0530.
    [15]JI Na, LIU Juan, WANG Haoran, GAO Rui, LU Yonglai, LI Fanzhu. Simulation analysis and experimental study on stiffness and fatigue life fluctuation of the rubber bearing for heavy trucks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0263
    [16]GAO T F,KONG L G,SU B,et al. Design and simulation of detector for outer heliosphere pickup ions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):367-377 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0243.
    [17]ZHOU B L,LI R F,ZENG L,et al. A sparse estimation method for radar target direction with sliding-window subarray configuration in mainlobe jamming[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1623-1629 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0552.
    [18]SONG L P,CHEN D F,TIAN T,et al. A real-time correlation algorithm for GEO targets based on radar ranging and velocity measurement[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2167-2175 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0615.
    [19]LI Wen, CAI Yongqing, CHEN Mengfan, LIU Peng. Optical path simulation and design of NO rapid detection optical cavity structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2146-2152. doi: 10.13700/j.bh.1001-5965.2021.0105
    [20]YANG Chao, JIANG Yu, WU Zhigang. Numerical simulation of skipping motion of three-dimensional structure based on boundary element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1678-1691. doi: 10.13700/j.bh.1001-5965.2022.0141
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.9 %FULLTEXT: 24.9 %META: 74.3 %META: 74.3 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.0 %其他: 2.0 %Seattle: 0.3 %Seattle: 0.3 %北京: 2.9 %北京: 2.9 %宿州: 0.3 %宿州: 0.3 %张家口: 1.7 %张家口: 1.7 %扬州: 0.1 %扬州: 0.1 %杭州: 0.1 %杭州: 0.1 %格兰特县: 0.1 %格兰特县: 0.1 %江门: 0.4 %江门: 0.4 %深圳: 8.5 %深圳: 8.5 %漯河: 0.1 %漯河: 0.1 %福州: 0.1 %福州: 0.1 %芒廷维尤: 8.5 %芒廷维尤: 8.5 %芝加哥: 0.4 %芝加哥: 0.4 %西宁: 72.7 %西宁: 72.7 %西安: 0.4 %西安: 0.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.0 %郑州: 1.0 %阳泉: 0.3 %阳泉: 0.3 %其他Seattle北京宿州张家口扬州杭州格兰特县江门深圳漯河福州芒廷维尤芝加哥西宁西安邯郸郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3875) PDF downloads(909) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return