Sun Zhijie, Xue Zhongmin, Yang Bo, et al. Effect of low profile additives on the shrinkage and mechanical properties of unsaturated polyester[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(10): 1096-1100. (in Chinese)
Citation: HAN Jun, XIONG Zhang, GONG Sheng-rong, et al. Automatic Moving Object Detection and Indexing of Surveillance System[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(4): 400-403. (in Chinese)

Automatic Moving Object Detection and Indexing of Surveillance System

  • Received Date: 20 Sep 2000
  • Publish Date: 30 Apr 2001
  • Aiming at the shortcoming of existing video surveillance system, an intelligent surveillance system which can accomplish automatic detection and classification of moving objects by making use of the computer system is presented. Moving object is detected by means of a higher-order statistics performed on a group of inter-frame differences, followed by a motion detection phase, producing a binary moving object. Morphological operator is used to reduce false alarm, moving object is tracked by concept of detecting block. Detecting of moving object and event of interest is used to automatically annotate raw video data, and generate video indexing database. The user can specify object-based queries on the surveillance video sequence and "jump" to events of interest. The experimental results show that the performance proposed method is efficient and robust in the intelligent surveillance system.

     

  • [1] Stringa Elena, Regazzoni S Carlo. Real-time video-shot detection for scene surveillance applications[J]. IEEEE Transactions on Image Processing, 2000, 9(1):69~79. [2] Neri A, Colonnese S, Russo G. Automatic moving object and background separation[J]. Signal Processing, 1998, 66:219~232. [3] Courtney D J. Automatic video indexing via object motion analysis[J]. Pattern Recognition,1997,30(4):607~625. [4] Dan Asit, Sitaram Dinkar. BRAHMA:browsing and retrieval architecture for hierarchical multimedia annotation[J]. Multimedia Tools and Applications,1998,7:83~101.
  • Relative Articles

    [1]ZHANG P H,ZHOU G Y,SHEN Y Y,et al. Simulation of parallel separation characteristics using NNW-FlowStar software[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1620-1628 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0275.
    [2]ZHANG Fan, DING Mingsong, CHEN Jianqiang, LIU Wan, JIANG Tao, LI Peng, JIANG Jun. Interactive design and implementation of HPCC-oriented industrial CFD software[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0810
    [3]ZHUANG Nan-jian, YANG Xue-ya, GU Run-ping. Optimization of the Take-off Rotation Considering the Tail Striking Dynamic Limit Angle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0189
    [4]LI B,XING Z W,WANG L W. Dynamic prediction for aircraft ground deicing operation process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):224-233 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0189.
    [5]TANG Y,DAI Q,YANG M Y,et al. Software defect prediction algorithm for intra-membrane sparrow optimizing ELM[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):643-654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0438.
    [6]GENG Z T,ZHAO J Q. Design and development of virtual simulation experiment software of composite piezoelectric materials[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3377-3381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0826.
    [7]ZHANG Fan, LIU Wan, GUO Yong-yan, CENG Zhi-chun, HE Qian-wei, ZHAO Zhong. The application and practice of black box testing technology in Fluid Simulation Software[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0621
    [8]LIU Z Y,ZHANG G,LIU H R,et al. Software robot-based application behavior simulation for cyber security range in industrial control field[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2237-2244 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0597.
    [9]HU X,CHEN J M,LI H F. Software security vulnerability patterns based on ontology[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3084-3099 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0783.
    [10]CHENG Hu-hua, WU Shuai, JIANG Zhu-hui, ZHANG Ru-cai. Research on maximum aerodynamic load prediction method during launch vehicle launch[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0237
    [11]DU J H,HU M H,ZHANG W N,et al. Weakly supervised evaluation of airport traffic situation based on metric learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1772-1778 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0568.
    [12]PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152.
    [13]XU F J,ZHOU X,ZHAO J S,et al. Conception and development of software-defined satellite technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1543-1552 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0562.
    [14]YANG B,HE Y Z,XU F,et al. Using improved genetic algorithm for software fault localization aided test case generation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2279-2288 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0524.
    [15]WANG Lizhen, LIU Jinglong, ZHAO Yanpeng, BU Weiping, LIU Songyang, FAN Yubo. Effect of helmet on neck injury of pilots in flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1818-1826. doi: 10.13700/j.bh.1001-5965.2022.0609
    [16]Li Qiuying, Li Haifeng, Wang Jian. Effects of software test efficiency on software reliability demonstration testing effort[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 325-330.
    [17]Fu Jianping, Liu Bin. Object-driving software testability measurement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12): 1569-1574.
    [18]Gao Juntao, Zhang Li. Schedule planning method based on process modeling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(09): 1099-1102.
    [19]Dong Zhaowei, Zhang Yidu, Liu Shengyong. Residual stress simulation and analysis of milling process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(07): 762-765.
    [20]LU Min-yan. Study on Software Reliability Parameters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(2): 241-244.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2625) PDF downloads(1278) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return