Zhao Xin, Qin Honglei, Lang Ronglinget al. GPS position solution algorithm based on the optimization theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (9): 1219-1223. (in Chinese)
Citation: LI Tian, WU Zhe, LI Jinget al. Integrated Aerodynamic-Stealth Optimal Design of Aircraft Configuration Parameters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(1): 76-78. (in Chinese)

Integrated Aerodynamic-Stealth Optimal Design of Aircraft Configuration Parameters

  • Received Date: 11 Oct 1999
  • Publish Date: 31 Jan 2001
  • Basing on the aerodynamic and RCS objectives,the geometrical parameters of the wing and tail planform and few geometrical parameters of fuselage are optimized.According to the requirements of the forth generation of fighter,the desirable and acceptable values of the objectives and constraints were determined. And according to the theory of fuzzy optimization,the satisfactory function of each objectives and constraints were determined. Then, 5 fuzzy optimization model are established by the application of different combinations of general satisfactory function and fluctuant weights or constant weights.So the designers can make choice according to their different design concepts and purposes.

     

  • [1] 陈树勋.精密复杂结构的几种现代设计方法[M].北京:北京航空航天大学出版社,1992. [2] 汪培庄.模糊系统理论与模糊计算机[M].北京:科学出版社,1996.
  • Relative Articles

    [1]YU Xiaohai, QU Yaobin, SHI Peng. A Task Planning Method for Space-Based Observation of Large-Scale LEO Target Set[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0649
    [2]YE Yi-qiao, SHEN Hai-dong, LIU Yan-bin, GAO Ze-peng, KONG Xiang, CHEN Jin-bao. Integrated design of hypersonic aircraft wing layout and mission trajectory[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0650
    [3]KONG Lingwei, LI Weiqi. Optimization of aircraft speed vector control based on Hp adaptive Pseudo-spectral method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0405
    [4]ZHOU D P,LI H Q,WANG Y G,et al. Aircraft system identification algorithm based on generalized equivalent model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1454-1462 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0507.
    [5]WEI Zhiqiang, XIAO Xinlong. Vertiport operational task planning model and capacity estimation method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0249
    [6]ZHANG C Y,WANG G,CHE H L,et al. Motion analysis and gait planning of a novel revolving wheel-legged robot[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1675-1684 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0491.
    [7]WANG R,LI J M,SHI Y L,et al. Vision-based path planning algorithm of unmanned bird-repelling vehicles in airports[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1446-1453 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0717.
    [8]WEI Ming, SUN Ya-ru, SUN Bo, WANG Sheng-jie. Cooperative planning for safe transportation routes and flight paths of UAVs with multiple dispatching centers and soft time windows[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0509
    [9]WEI Kun-yu, LI Chen-di, LI Bo-wen, YUAN Yuan, HE Xiao-fan. Research on Developing Design Gust Load Spectrum for Bomber-Mounted Air-to-Ground Missiles[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0126
    [10]DENG J X,CHEN L,LU S T,et al. Damage distribution of composite structures of a certain type aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):920-930 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0379.
    [11]REN Si-yuan, WANG Song, CHEN Gong, DENG Chen, PAN Zheng-xiao. Research on task planning of multiple UAVs with simultaneous arrival constraints[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0783
    [12]FAN B X,CHEN G M,CAO Y Q. Multi-objective optimization of aerodynamic layout for hypersonic reentry vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1639-1650 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0566.
    [13]ZHANG K Q,ZHOU X F,MEN X H,et al. Three-dimensional integrated guidance and control design with fixed-time convergence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):842-852 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0360.
    [14]XING Na, DI Hao-tian, YIN Wen-jie, HAN Ya-jun, ZHOU Yang. Path planning for agents based on adaptive polymorphic ant colony optimization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0432
    [15]YAN Y,MA X L. Air freight route planning based on transshipment under air alliance[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):115-127 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0166.
    [16]ZHANG H B,WANG X,XU Y H,et al. Relative entropy method in target recognition with fuzzy features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3547-3558 (in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0237.
    [17]SONG E B,YAO Y P. Method of improving tracking precision of planning path for impact rollers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):106-114 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0495.
    [18]LI J,ZHANG R C,PAN C Y,et al. Micro immune optimization algorithm for single objective probabilistic constrained programming[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):525-537 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0288.
    [19]SHI Y,WAN Z Q,WU Z G,et al. Aerodynamic order reduction method for elastic aircraft flight dynamics simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1689-1706 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0510.
    [20]ZHAO M,LU H,WANG S Q,et al. A multimodal multi-objective path planning algorithm based on multi-swarm cooperative learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):606-616 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0274.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 28.6 %FULLTEXT: 28.6 %META: 70.4 %META: 70.4 %PDF: 1.0 %PDF: 1.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.6 %其他: 2.6 %Kao-sung: 0.1 %Kao-sung: 0.1 %上海: 0.4 %上海: 0.4 %北京: 1.9 %北京: 1.9 %南京: 0.3 %南京: 0.3 %南阳: 0.1 %南阳: 0.1 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %大连: 0.3 %大连: 0.3 %天津: 0.1 %天津: 0.1 %宣城: 0.1 %宣城: 0.1 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %张家口: 1.6 %张家口: 1.6 %扬州: 0.2 %扬州: 0.2 %无锡: 0.4 %无锡: 0.4 %昆明: 0.3 %昆明: 0.3 %景德镇: 0.1 %景德镇: 0.1 %杭州: 0.5 %杭州: 0.5 %沈阳: 0.1 %沈阳: 0.1 %深圳: 7.8 %深圳: 7.8 %温州: 0.2 %温州: 0.2 %漯河: 0.9 %漯河: 0.9 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.1 %石家庄: 0.1 %芒廷维尤: 6.0 %芒廷维尤: 6.0 %芝加哥: 0.2 %芝加哥: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 71.7 %西宁: 71.7 %西安: 0.1 %西安: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 2.6 %郑州: 2.6 %阳泉: 0.2 %阳泉: 0.2 %其他Kao-sung上海北京南京南阳哈尔滨哥伦布大连天津宣城库比蒂诺张家口扬州无锡昆明景德镇杭州沈阳深圳温州漯河盐城石家庄芒廷维尤芝加哥襄阳西宁西安邯郸郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3310) PDF downloads(1108) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return