ZHAO Yu, HUANG Min. Integrated Evaluation Model of Reliability Based on Varied PopulationEnvironment Data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002, 28(5): 597-600. (in Chinese)
Citation: Zhang Yunfei, Ma Dongli, Wu Zhe, et al. Radar Scattering Characteristic Test and Analysis of Two Stealth Aircraft Models[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(2): 147-150. (in Chinese)

Radar Scattering Characteristic Test and Analysis of Two Stealth Aircraft Models

  • Received Date: 06 Dec 2001
  • Publish Date: 28 Feb 2003
  • Radar scattering characteristics of two stealth fighter models were tested and analyzed. The models were stealed with the following procedures: controlling the radiating directions and numbers of main scatter sources, increasing the occupation ratio, surface metalizing, leaning the intake lips in three directions, and designing the gaps of the aileron as rhombus. The main results and conclusions are as follows: RCS values of both models are less than 1 m2, meaning that the stealth characteristic in nose direction is of great importance to the design of modern fighter. It is of benefit to stealth to reduce the number of scattering directions. Incomplete dihedral reflector constructed with the leaned tailer and wing, fuselage or stabilizer is a strong scattering source.

     

  • [1] 张云飞,张 考,武 哲,等.飞机总体低RCS外形研究. 北京航空航天大学隐身技术研究室,1995 Zhang Yunfei, Zhang Kao,Wu Zhe, et al. Study on the low radar cross section of the general aircraft. The Stealth Technology Lab,Beijing University of Areonautics and Astronautics,1995(in Chinese) [2] 陆柱蕙.F-117A飞机隐身性能研究[J].系统工程与电子技术,1990,(6):31~38 Lu Zhuhui. Study on the stealth characteristics of F-117A[J]. Systems Engineering and Electronics, 1990,(6):31~38(in Chinese) [3] 庄 宜. YF-22分析报告. 北京航空航天大学隐身技术研究室,1992 Zhuang Yi. The analysis report on YF-22. The Stealth Technology lab, Beijing University of Areonautics and Astronautics,1992(in Chinese) [4] 理查森 D. 现代隐身飞机[M].魏志祥,顾维伦,李景忠,等译.北京:科学出版社,1991 Richardson D. Stealth warplanes[M].Translated by Wei Zhixiang,Gu Weilun,Li Jinzhong, et al.Beijing:Science Press,1991(in Chinese)
  • Relative Articles

    [1]TIAN Xinyu, WANG Shaoping, WANG Xingjian, ZHANG Yuwei, WEI Yi. Ankle prosthesis control method inspired by central pattern generator[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0665
    [2]LIN Junting, CHEN Xinzhou. Sliding mode control of magnetic levitation ball systems based on high-gain disturbance observer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0518
    [3]JIN L,YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2404-2412 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0666.
    [4]Li Jun, Zhu Hongyu. Adaptive Prescribed Performance Attitude and Orbit Tracking Control of Spacecraft in Irregular Gravitational Fields[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0333
    [5]BAI F C,YANG X X,DENG X L,et al. Station keeping control for aerostat in wind fields based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2354-2366 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0629.
    [6]LIU X L,LI J K. Iterative learning control of electric load simulator of aircraft steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2727-2738 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0711.
    [7]CHEN Qing-yang, XIN Hong-bo, LU Ya-fei, WANG Peng, WANG Yu-jie, ZHENG Jun-fei. Ground Taxiing Lateral Deviation Correction Control for High Subsonic UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0635
    [8]WAN Hongfa, LI Shanshan, LI Xinxing, TAN Xuli, PEI Xianyong. Analysis of observable degree of gravity aided inertial navigation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0308
    [9]CAI H,SHI P. Attitude control method for flexible spacecraft based on LPV model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3921-3929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0880.
    [10]XU J M,HUANG Z G,LI R. LEO satellite positioning method and simulation verification aided by airborne navigation equipment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3230-3238 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0759.
    [11]LI X R,ZHANG X Y,LI Z,et al. FC-AE-1553 dynamic bandwidth scheduling mechanism for multi network controllers[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2963-2974 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0755.
    [12]YI Shaopeng, DONG Wei, WANG Weilin, WANG Chunyan, YI Aiqing, WANG Jianan. Neural Network Controller-Based Safe Landing Algorithm for UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0402
    [13]MENG Z P,YANG L Q,WANG B,et al. ADRC design for folding wing vehicles based on improved equilibrium optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2449-2460 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0698.
    [14]ZHANG Y P,BIAN Q,YANG R Z,et al. Evaluation method of H2O penetration depth of drying reactor based on temperature gradient[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3123-3130 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0764.
    [15]JI Xudong, CHEN Youdong, WEI Hongxing. Robust control of mobile robots based on H under DoS attack[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0267
    [16]ZHANG J L,YANG X X,DENG X L,et al. Altitude control of stratospheric aerostat based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2062-2070 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0622.
    [17]ZHENG S F,ZHU Y C,LING J,et al. Experimental study on parallel control of axial dual-piezoelectric stack actuator[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1460-1470 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0432.
    [18]HE J J,YUAN C Q,GONG S P,et al. Sliding mode control for formation flying near libration points using hybrid propulsion[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1222-1230 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0420.
    [19]XIA L C,WANG S Y,ZHANG J,et al. Bi-bandwidth extended state observer based disturbance rejection control method and its application on UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1201-1208 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0411.
    [20]MA L Q,SUN X Z. Design of flight control system for BWB civil aircraft considering safety[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):804-814 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0341.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2323) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return