Zhu Chun, Yan Jihe, Li Weiqinet al. Firewall System with Strong Authentication[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(4): 470-474. (in Chinese)
Citation: Zhang Ping, Wang Dong, Chen Zongjiet al. PostStall Maneuver Control Law for Aircrafts with New Control Configuration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(1): 23-26. (in Chinese)

PostStall Maneuver Control Law for Aircrafts with New Control Configuration

  • Received Date: 06 Jul 2001
  • Publish Date: 31 Jan 2003
  • A post-stall maneuver control law for aircraft with new control surfaces and trust vectoring control is proposed. The air dynamical data table is operated by minimal mean-square value of the error between the air data and the combined continued functions. The 6 freedom nonlinear dynamical equations of the aircraft are predigested at static operating points by extended linearization which still possess nonlinear characters. The control laws of the inner closed-loop system and post-stall maneuver are obtained through using symbol operations design. Simulation result shows that the control law is effective for the post-stall maneuver design of modern aircrafts.

     

  • [1] Zwernememan W D,Eliler B G. VISTA/F-16 multi-axis thrust vectoring (MATV) law design and evaluation . AIAA-94-3513-CP,1994 [2] 廖展燕.X-31A超机动性验证机试飞[J].飞行试验,1994, 10(1):17~20 Liao Zhanyan. Flight test of the X-31A highly maneuverable testing aircraft . Flight Testing, 1994,10(1):17~20(in Chinese) [3] Durham W C. Control stick logic in high-angle-of-attack maneuvering[J]. Journal of Guidance Control and Dynamics, 1995, 18(5):170~174 [4] Gutter R, Friehmelt H, Haiplik R. Tactical utility of the X-31A using post technologies . ICAS-96-3.7.5,1996 [5] Walker L A. Flight testing the X-36-the test pilot's perspective . NASA Contract NAS 2-14269,1997 [6] 张 平,高金源. 采用扩展线性化法设计飞控系统[J]. 航空学报,1993, 14(9):A498~502 Zhang Ping, Gao Jinyuan. Flight control design using extended linearization of nonlinear systems[J]. Acta Aeronautica et Astronautica Sinica, 1993, 14(9):A498~502(in Chinese) [7] (德)布洛克毫斯·鲁道夫.飞行控制[M].北京:国防工业出版社,1999 Rudolf Brockhaus. Flight control[M]. Beijing:National Defence Industry Press, 1999(in Chinese)
  • Relative Articles

    [1]TAN C,YU P,LI B,et al. Pressure cascade control of brake-by-wire unit based on direct drive pump-valve cooperative[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1163-1171 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0216.
    [2]MA S H,ZHANG D,WANG M Y,et al. Directed interactive topology optimization design for multi-agent affine formation maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1367-1376 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0180.
    [3]WANG Y J,CHEN Q Y,GAO X Z,et al. Guidance and control method for dynamic net-recovery of UAV and the flight test verification[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):487-497 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0043.
    [4]RUAN S L,DONG Z,SUN Y,et al. Parameter optimization method of thrust vector/pneumatic rudder composite control law for aircraft based on singular value method[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1332-1341 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0227.
    [5]ZHANG Y,ZHAO X Y,YANG S H,et al. Quality control model of CYGNSS sea surface wind speed retrieval based on ML combination[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):20-29 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0220.
    [6]FENG Yu-xuan, HUO Ying-yuan, LI Jun-jie. Design of multiple-input/multiple-output control law for active flutter suppression of flying-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0144
    [7]SUN X Z,WU J,SHI L X,et al. Dynamic force equalization for dual redundancy electro-mechanical actuation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1208-1218 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0466.
    [8]YANG R R,ZHANG L,ZHAO J L,et al. Nonlinear variable damping integral sliding mode control for electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):163-172 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0252.
    [9]ZHANG Y,YU H,YANG X X,et al. Adaptive group formation tracking-containment control for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):97-109 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0264.
    [10]LIU S Y,YANG H L,ZHANG Z G,et al. Vibration control of flexible spacecraft with output constraints and external disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1560-1567 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0622.
    [11]LEI Juan-mian, ZHU Pei-yu. Numerical Study on Lateral Jet Control Efficiency of Hypersonic Reentry Double-cone Vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0714
    [12]ZHANG Zhangyong, SUN Yuhua, CHEN Daming, GUO Zhihao. A method for suppressing conducted interference in parallel drive systems based on modulated wave phase shift[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0342
    [13]GUAN Y Z,FENG M. Application of active disturbance rejection control in gyro motor steady speed control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):234-242 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0209.
    [14]PAN C Z,HE G,LI Z J,et al. Adaptive filtered control for uncertain electro-hydraulic servo systems with time-varying output constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1819-1828 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0497.
    [15]SONG Z R,ZHAO J C,YANG W F. Boundary protection control method of helicopter power system based on flight test analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):100-105 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0431.
    [16]CHEN T T,WANG F Y,XIA C Y,et al. Tracking control of multi-agent systems based on persistent-hold mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3321-3327 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0065.
    [17]JIN Z B,LI D C,SUN Y,et al. Man-machine cooperative control of helicopter and flight experimental validation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3022-3030 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0038.
    [18]DENG Chen, CHEN Gong, AO Hou-jun, REN Si-yuan, DU Wen-tao. Design and implementation of a hardware-in-the-loop simulation system for interceptor composite control system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0703
    [19]YANG Yuchen, ZHANG Zenghui, YAN Jianing, ZHANG Jing, YANG Lingyu. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053
    [20]ZHANG Yuan, HUANG Wanwei, LU Kunfeng, BAI Wenyan, YU Jianglong. Modeling and finite-time control for hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993. doi: 10.13700/j.bh.1001-5965.2021.0701
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3082) PDF downloads(792) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return