Qu Xiaochuan, Li Zhenghang, Gong Xiaoyinget al. Analysis on ionospheric delay correction method of space-borne single-frequency GPS data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (2): 252-256. (in Chinese)
Citation: Ren Zhiting, Jiao Zongxia. Design of MotorDrive Load Simulator with Small Torque Outputs[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(1): 91-94. (in Chinese)

Design of MotorDrive Load Simulator with Small Torque Outputs

  • Received Date: 05 Nov 2001
  • Publish Date: 31 Jan 2003
  • Motor-drive load simulator with small torque outputs was designed, its stability and dynamic performance were analyzed. Based on an introduction to the structure and principle of electrical loading system, a mathematical model of the system was put forward to analyze and to simulate its stability and anti-jamming. By including multi-feedback and feedforward in the system and using control methods to control DC-motor, improved performance of the system was obtained. Simulation results indicated that the performance of the motor-drive load simulator is as good as that of the electro-hydraulic load simulator in the range of small torque.

     

  • [1] 华 清.电液负载模拟器的关键技术研究 . 北京航空航天大学自动化科学与电气工程学院,2001 Hua Qing. Studies on the key technology of electro-hydraulic load simulator .School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics,2001(in Chinese) [2] Hitoshi Maekawa. Compact servo driver for torque control of DC-servo motor based on voltage control . Proc of IEEE Int Conf on Advanced Intelligent Mechatronics . Atlanta, USA, 1999 [3] 李玉涛.数字人感系统的研制 .北京航空航天大学自动化科学与电气工程学院, 2001 Li Yudao. Studies on digital human motion perception system .School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics,2001(in Chinese) [4] 关静丽.电动式舵机力矩负载模拟器 .北京航空航天大学自动化科学与电气工程学院,2001Guan Jingli. The motor momental load simulator .School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics,2001(in Chinese)
  • Relative Articles

    [1]CUI Zhen, ZHAO Zhigang, SU Cheng, MENG Jiadong, ZHAO Xiangtang, CHAI Wei. Dynamics and Dynamic Stability Analysis of Rope Traction Upper Limb Rehabilitation Robot[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0827
    [2]LYU Y Z,WAN H M,XU Y M. Dynamic stability analysis of a single-point hanging container[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):419-427 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0036.
    [3]WANG C S,ZHANG X Y,ZHAN Z X,et al. Analysis of compression stability and load capacity of thick composite plate structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):94-101 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0991.
    [4]WANG X L,YIN H,HE M. Potential conflict prediction of mobile targets in airfield areas based on LSTM[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1850-1860 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0505.
    [5]LI Bowen, LEI Xiaoyong. Flight task recognition and action segmentation based on SVM[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0635
    [6]XU H,HAN J L,XI Y,et al. Aeroelastic morphing flight simulation platform for a folding wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1921-1930 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0536.
    [7]WANG Luofeng, CHEN Renliang, ZHAO Yu. Fuzzy anti-swing controller for improving handling quality of helicopter slung load operation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0265
    [8]LI H H,HAN Y H. Robust anti-swing technology for helicopter slung load based on wave control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1629-1638 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0326.
    [9]YAN Linli, ZHANG Jiankang, ZHOU Qingyong, LEI Yaohu, FAN Shaojuan. Analysis of the stability of the core payload on the satellite XPNAV-01[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0273
    [10]LI Wei, ZHAO Zhigang, ZHAO Xiangtang, LI Zixuan, GANG Zheng. Workspace stability evaluation of multi-engine suspension system based on EWM -TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0546
    [11]TAN J F,YANG Y X,ZHANG W G,et al. Influence of crosswind on helicopter brownout[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3111-3122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0794.
    [12]LYU Yuzhu. Study on Flight Characteristics and Speed Limit of Helicopter with Slung Load[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0563
    [13]LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0035.
    [14]SHI Y,WAN Z Q,WU Z G,et al. Aerodynamic order reduction method for elastic aircraft flight dynamics simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1689-1706 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0510.
    [15]SONG Z R,ZHAO J C,YANG W F. Boundary protection control method of helicopter power system based on flight test analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):100-105 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0431.
    [16]GAO Yang, XU Guo-ning, WANG Sheng, LI Yong-xiang, CAI Rong, YANG Yan-chu. Stability analysis of stratospheric airship energy system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0020
    [17]ZHANG X C,WAN Z Q,YAN D. Optimal active twist control for rotor vibration reduction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3397-3408 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0105.
    [18]XIAO Y,CHEN X,YANG L Y,et al. Analysis of radome error on guidance loop stability[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3066-3074 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0780.
    [19]TAN J F,HAN S,WANG C,et al. Accelerated computational method of helicopter brownout based on DEM[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1352-1361 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0450.
    [20]JIN Z B,LI D C,SUN Y,et al. Man-machine cooperative control of helicopter and flight experimental validation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3022-3030 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0038.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2514) PDF downloads(1340) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return