Liu Shengping, Wu Licheng, Lu Zhenet al. Trajectory tracking control of three-DOF planar under-actuated manipulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(03): 307-310. (in Chinese)
Citation: Fan Shangchun, Song Minggang. Analysis on Response of Straight Tube CoriolisMassFlow Meter under Pulsating Flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(1): 67-71. (in Chinese)

Analysis on Response of Straight Tube CoriolisMassFlow Meter under Pulsating Flow

  • Received Date: 27 Sep 2001
  • Publish Date: 31 Jan 2003
  • The measurement error of Coriolis mass-flow meter is based on the vibration characteristics of the elastic tube of flow meter. In this paper, the influence of pulsating flow on performance of Coriolis mass-flow meter is analyzed, with the straight tube Coriolis mass-flow meter as the investigated object. The mathematical model of vibration of straight tube Coriolis mass-flow meter under pulsating flow is established. By making use of Galerkin method, the model is converted into a coupled multi-degree system under combined parametric and forcing excitation. Multiscale method is used to analyze qualitatively the discrete multi-degree system, the main vibrational components of the tube under pulsating flow are given, and thus the mechanism of action of pulsating flow to Coriolis mass-flow meter is shown clearly. Most of conclusions obtained here have been testified by experiments that were reported in the published papers. The conclusions are helpful to further investigation and application of Coriolis mass-flow meter.

     

  • [1] 樊尚春. 科里奥利直接质量流量计[J]. 中国学术期刊文摘,1999,5(12):1552~1554 Fan Shangchun. Coriolis direct mass flow meter[J]. Chinese Science Abstracts, 1999,5(12):1552~1554(in Chinese)  [2] Vetter G, Notzon S. Effect of pulsating flow on Coriolis mass flowmeters[J]. Flow Measurement and Instrumentation, 1994, 5(4):263~273  [3] Cheesewright R, Clark C. The effect of flow pulsations on Coriolis mass flow meters[J]. Journal of Fluids and structures, 1998, 12:1025~1039  [4] Cheesewright R, Clark C, Bisset D. Understanding the experimental response of Coriolis massflow meters to flow pulsations[J]. Flow Measurement and Instrumentation, 1999, 10:207~215  [5] Cheesewright R, Clark C, Bisset D. The identification of external factors which influence the calibration of Coriolis massflow meters[J]. Flow Measurement and Instrumentation, 2000, 11:1~10  [6] Belhadj A, Cheesewright R, Clark C. The simulation of Coriolis meter response to pulsating flow using a general purpose F.E. code[J]. Journal of Fluids and Structures, 2000, 14:613~634  [7] Paidoussis M P, Issid N T. Dynamic stability of pipes conveying fluid[J]. Journal of Sound and Vibration, 1974, 33(3):267~294  [8] Nayfeh A H, Mook D T. Nonlinear Oscillation. New York:John Wiley & Sons, 1979
  • Relative Articles

    [1]DENG C J,CHEN Q J,ZHANG T S,et al. NHC lever arm estimation algorithm for vehicle-integrated navigation systems based on dead reckoning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):668-675 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0035.
    [2]WANG Boqiao, ZHANG Xianghua, CHEN Zheng, ZHANG Ze. Modelling Method for Non-Singular Dynamics of Air-To-Air Missiles and Trajectory Optimization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0760
    [3]DOU L,LI X K,ZHANG H L,et al. Fixed time trajectory tracking control of forward-tilting morphing aerospace vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):1005-1017 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0152.
    [4]LI T,ZHAO Y Q,XU T,et al. Stability control of vehicles powered by non-pneumatic wheels based on robust optimal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1342-1351 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0238.
    [5]LEI Bang-jun, DING Qi-shuai, MOU Qian-xi, WU Zheng-ping. Visual tracking algorithm based on template updating and dual feature enhancement[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0020
    [6]LUO Y L,LIAO Y R,LI Z M,et al. Strong tracking CKF adaptive interactive multiple model tracking algorithm based on hypersonic target[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2272-2283 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0587.
    [7]ZHANG X,LU X W,LAI L J. Large-stroke microposition stage driven by reluctance actuator and its trajectory tracking control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2852-2861 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0702.
    [8]DONG J C,GAO Q H,LIU Z H. Planar motion control of distributed-driven vehicles considering dynamic hysteresis[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3842-3853 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0887.
    [9]WAN B,SU X C,WANG J,et al. A precise landing control method based on model predictive control algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1197-1207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0383.
    [10]WANG Y X,LI X,CAI Z H,et al. Integrated control method for quadrotors’ aggressive trajectory tracking under multiple constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):48-60 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0208.
    [11]ZHANG B H,CHAI D D,MENG L B,et al. Anti-occlusion target tracking algorithm of UAV based on multiple detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2442-2454 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0693.
    [12]JIN G D,XUE Y L,TAN L N,et al. Aerial object tracking algorithm for UAVs based on dual-attention shuffling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):53-65 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0177.
    [13]GUO Q,WU T H,XU W,et al. Target tracking algorithm based on saliency awareness and consistency constraint[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2244-2257 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0688.
    [14]REN Xuan-ming, TANG Xin-min, LIU Yu-sheng, LU Qi-xing. Target trajectory tracking and extrapolation based on the INT-VSMM algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0724
    [15]MA Su-gang, DUAN Shuai-peng, HOU Zhi-qiang, YU Wang-sheng, PU Lei, YANG Xiao-bao. Multi-object tracking algorithm based on dual-branch feature enhancement and multi-level trajectory association[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0472
    [16]TANG Z Y,MA F Y,PEI Z C. Improved PSO-RBF neural network adaptive sliding mode control for quadrotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1563-1572 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0477.
    [17]WU Sunyong, ZHOU Yusong, XIE Yun, CAI Ruhua, FAN Xiangting. Extended target tracking algorithm based on MM-GGIW-PMBM filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2356-2364. doi: 10.13700/j.bh.1001-5965.2021.0162
    [18]SHAO Xin, JI Li, ZOU Huaiwu, XIE Yangmin. A parameter calibration method for manipulators based on laser displacement measurement[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2281-2288. doi: 10.13700/j.bh.1001-5965.2021.0093
    [19]DU Xianchen, LIU Xue'ao, DONG Yang, WANG Hui, HE Tianyu, WANG Chunjie. Design and dimensional synthesis of a variable wing sweep mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2502-2509. doi: 10.13700/j.bh.1001-5965.2021.0125
    [20]WANG Yingxun, SONG Xinyu, ZHAO Jiang, CAI Zhihao. Anti-disturbance trajectory tracking control method for aggressive quadrotors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1806-1817. doi: 10.13700/j.bh.1001-5965.2022.0216
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.6 %FULLTEXT: 8.6 %META: 88.8 %META: 88.8 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.6 %其他: 5.6 %Central District: 0.2 %Central District: 0.2 %China: 0.4 %China: 0.4 %Rochester: 0.2 %Rochester: 0.2 %上海: 0.4 %上海: 0.4 %东莞: 0.2 %东莞: 0.2 %佛山: 0.2 %佛山: 0.2 %北京: 4.6 %北京: 4.6 %哥伦布: 0.4 %哥伦布: 0.4 %天津: 0.4 %天津: 0.4 %宜昌: 0.2 %宜昌: 0.2 %宝鸡: 0.4 %宝鸡: 0.4 %宣城: 0.8 %宣城: 0.8 %广州: 0.4 %广州: 0.4 %张家口: 1.2 %张家口: 1.2 %昆明: 0.4 %昆明: 0.4 %杭州: 0.4 %杭州: 0.4 %洛杉矶: 0.2 %洛杉矶: 0.2 %深圳: 8.6 %深圳: 8.6 %漯河: 0.8 %漯河: 0.8 %芒廷维尤: 21.9 %芒廷维尤: 21.9 %芝加哥: 1.0 %芝加哥: 1.0 %葵涌: 1.2 %葵涌: 1.2 %西宁: 46.6 %西宁: 46.6 %西安: 0.2 %西安: 0.2 %迪亚巴克尔: 0.2 %迪亚巴克尔: 0.2 %郑州: 1.6 %郑州: 1.6 %重庆: 0.6 %重庆: 0.6 %长沙: 0.4 %长沙: 0.4 %青岛: 0.4 %青岛: 0.4 %其他Central DistrictChinaRochester上海东莞佛山北京哥伦布天津宜昌宝鸡宣城广州张家口昆明杭州洛杉矶深圳漯河芒廷维尤芝加哥葵涌西宁西安迪亚巴克尔郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3121) PDF downloads(933) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return