Lin Qiang, Xiong Huagang, Zhang Qishanet al. Bandwidth allocation for FC-AL under hard real time condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(04): 443-446. (in Chinese)
Citation: GAO Yan, LI Yong-hui, ZHANG Qi-shanet al. Radiolocation Technology in LA-CDMA Wireless Cellular Network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(4): 373-376. (in Chinese)

Radiolocation Technology in LA-CDMA Wireless Cellular Network

  • Received Date: 15 Jan 1999
  • Publish Date: 30 Apr 2000
  • Applications by the radiolocation technology in a code-division multiple access (CDMA) wireless cellular network are discussed, especially was used to manage fleet and vehicles in an Intelligent Traffic System (ITS) . In the LA-CDMA wireless communication system, a third generation communication system, which was invented by Chinese and has Independent Intelligent Property (IIP), the principle and methods for an additional radiolocation service are given. We propose two ways to implement it ,one is by the forward link, the other is by the reverse link, the advantages and disadvantages are also compared for each other in this article. We also analyze the problems that are encountered when using LA-CDMA cellular networks for position.

     

  • [1] Jame J, Caffery Jr, Gordon L.Overview of radiolocation in CDMA cellular system[J].IEEE Commun Magazine, 1998,36(4):38~45. [2]陈俊壁.CDMA技术的新进展[J]. 移动通信,1998(5):8~11. [3]孙立新,邢宁霞.CDMA移动通信技术[M].北京:人民邮电出版社,1996. [4]Lee W C Y.移动通信设计原理[M]. 北京:科学技术文献出版社,1990.
  • Relative Articles

    [1]YIN W Z,LIAN D P,LI K Y,et al. Manipulator force/position hybrid control based on staged adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):161-166 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0955.
    [2]ZHU Chaoqun, LIU Shuhui. Nonfragile Asynchronous Control of T-S Fuzzy Markov Jump Systems under Hybrid Cyber-Attacks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0349
    [3]LI M H,JIN S,DU Y. Adversarial attack method based on loss smoothing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):663-670 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0478.
    [4]LI Hanwei, LI Xinkai, ZHANG Hai, JIANG Lingfeng, MENG Yue, ZHANG Hongli. End-to-End Autonomous Navigation Method for Drones Based on AR-PPO[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0582
    [5]LI Fan, LIU Chenyang, SUN Zhibo, DONG Zhenbo, QIAN Weipeng. A high-capacity image steganography algorithm based on end-to-end deep learning networks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0302
    [6]WAN B,SU X C,WANG J,et al. A precise landing control method based on model predictive control algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1197-1207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0383.
    [7]WANG Y X,LI X,CAI Z H,et al. Integrated control method for quadrotors’ aggressive trajectory tracking under multiple constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):48-60 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0208.
    [8]ZUO L,ZHANG X L,LI Z Y,et al. UAV control law design method based on active-disturbance rejection control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1512-1522 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0488.
    [9]ZHANG Y L,MA Z Z,SHI L,et al. Multi-agent coverage control based on communication connectivity maintenance constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):519-528 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0340.
    [10]LEI Juan-mian, ZHU Pei-yu. Numerical Study on Lateral Jet Control Efficiency of Hypersonic Reentry Double-cone Vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0714
    [11]DU X,SUN Z D,XU C L,et al. Pinning control of AUV cluster under input delay and communication delay[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1474-1480 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0538.
    [12]ZHENG W M,XU Y,LUO D L. Fixed-time formation control of quadrotor UAV swarm with unknown disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1702-1712 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0506.
    [13]LIU W,YAN S,WANG X B,et al. Consensus control of multi-agent systems with uncertain communication networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1463-1473 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0518.
    [14]ZHANG S,HAN X W,LI R P,et al. Improved remote regulated power supply control scheme in improved flyback converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1229-1239 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0458.
    [15]SUN X Z,WU J,SHI L X,et al. Dynamic force equalization for dual redundancy electro-mechanical actuation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1208-1218 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0466.
    [16]SUN X A,WANG Y,ZHOU Q X. A comprehensive air-ground target attackability value ranking based on comprehensive weighting[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1731-1737 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0539.
    [17]JI Xudong, CHEN Youdong, WEI Hongxing. Robust control of mobile robots based on H under DoS attack[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0267
    [18]WANG C Y,YANG L M,LI Y H. A mapping leader formation control strategy for multiple mobile robots based on two-stage sliding mode control[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3108-3114 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0792.
    [19]CHEN T T,WANG F Y,XIA C Y,et al. Tracking control of multi-agent systems based on persistent-hold mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3321-3327 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0065.
    [20]DU Xianchen, LIU Xue'ao, DONG Yang, WANG Hui, HE Tianyu, WANG Chunjie. Design and dimensional synthesis of a variable wing sweep mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2502-2509. doi: 10.13700/j.bh.1001-5965.2021.0125
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-060246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 35.7 %FULLTEXT: 35.7 %META: 64.3 %META: 64.3 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.4 %其他: 21.4 %张家口: 21.4 %张家口: 21.4 %深圳: 28.6 %深圳: 28.6 %石家庄: 21.4 %石家庄: 21.4 %芒廷维尤: 7.1 %芒廷维尤: 7.1 %其他张家口深圳石家庄芒廷维尤

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2678) PDF downloads(982) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return