Hou Yunyi, Jing Qianfeng, Ma Guangfuet al. Orbital rendezvous control method for berthing and tracking approach[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(8): 1124-1128. (in Chinese)
Citation: AMI Code, YANG Dong-kai, WEI Ke-pinget al. Improved AMI Code Used in Telemetry System[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(2): 145-148. (in Chinese)

Improved AMI Code Used in Telemetry System

  • Received Date: 22 Oct 1998
  • Publish Date: 29 Feb 2000
  • An improved AMI code being suitable for telemetry system is proposed. It is realized through inserting redundancy Bit into the binary data stream to be synchronized rapidly and steadily. It has no long continuous zeroes. Its properties are analyzed, such as code efficiency, error Bit rate, power spectrum, the acquisition probability of the first frame marker. This type of code has the similar power spectrum to the original AMI code, and though its code efficiency decreases, rapid synchronization will avoid losing data and increase the credibility of data. In addition, the implementation of this code is described in detail.

     

  • [1] Shark L K,Terrell T J,Simpson R J. Adaptive frame synchronizer for digital satellite communication systems[J]. IEE Proceedings, 1988,135(1):51~59. [2]曹志刚, 钱亚生. 现代通信原理[M]. 北京:清华大学出版社,1995. 191~206. [3]猪濑博(日),宫传洋(日). 脉冲编码调制通信进展[M].王德文译.北京:人民邮电出版社,1990. 83~91. [4]隋厚棠. 帧同步一次通过捕获概率[J]. 电子科学学刊, 1987,6(1):1~12.
  • Relative Articles

    [1]YANG G Y,ZHANG Y,HU L X,et al. Application of inclined slot in airfoil stall control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2601-2618 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0652.
    [2]QUAN Q,CHEN L. Control of non-affine nonlinear systems: A survey[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2367-2381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0642.
    [3]ZHANG Q C,WANG L,XI J X,et al. Tracking control of unmanned aerial vehicle swarms with leader-following double formation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2331-2342 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0607.
    [4]CHEN Qing-yang, XIN Hong-bo, LU Ya-fei, WANG Peng, WANG Yu-jie, ZHENG Jun-fei. Ground Taxiing Lateral Deviation Correction Control for High Subsonic UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0635
    [5]HE Chi-yuan, CHENG Shao-xu, XU Lin-feng, MENG Fan-man, WU Qing-bo. A Continual Learning Method Based on Differential Feature Distillation for Multimodal Network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0369
    [6]CHANG Jiaming, LI Sulan, DUAN Xuechao, ZHANG Wei, WANG Chenyang. Anti-stochastic disturbance control of airship[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0489
    [7]LIU H,HUANG S,TU H Y. Quadrotor sliding mode control based on predefined time[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1665-1674 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0481.
    [8]MENG Z P,YANG L Q,WANG B,et al. ADRC design for folding wing vehicles based on improved equilibrium optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2449-2460 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0698.
    [9]CAI H,SHI P. Attitude control method for flexible spacecraft based on LPV model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3921-3929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0880.
    [10]JIN L,YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2404-2412 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0666.
    [11]ZHAO Q,ZHEN Z Y,GONG H J,et al. UAV formation control based on dueling double DQN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2137-2146 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0601.
    [12]ZHOU B J,YU C Q,TAN L L,et al. Fast leveling control technology of vehicle platform based on interference compensation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1495-1503 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0447.
    [13]DUAN B,YANG S,LI A J. Design of LPV control law for unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):879-890 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0340.
    [14]XU N,XU L L,HE F C. Total focusing imaging in anisotropic additive manufacturing components using ultrasonic array[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1063-1070 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0404.
    [15]TAN Cao, YU Peng, LI Bo, LU Jia-yu, REN Yun-yun. Pressure Cascade Control of Brake-by-wire Unit Based on Direct Drive Pump-Valve Cooperative[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0216
    [16]TANG Y C,ZHU Q H,LIU F C,et al. Design of robust controller for single outrigger of vibration active isolation platform based on LPV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1796-1801 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0513.
    [17]YAN H B,XU W B,HUANG L E. Design of quadrotor attitude controller based on improved ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3283-3292 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0129.
    [18]WANG S Y,ZHANG J,YANG L Y. Attitude control law based on L1-ITD for a tail-sitter UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2501-2509 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0681.
    [19]WANG T,JIAO H C,LIU J,et al. Design of attitude control method for ultra-low-orbit satellite with pneumatic steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):548-558 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0265.
    [20]ZHANG Libo, LI Yupeng, ZHU Deming, FU Yongling. Inverse kinematic solution of nursing robot based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1925-1932. doi: 10.13700/j.bh.1001-5965.2021.0042
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2718) PDF downloads(967) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return