Citation: | PENG Lin-ping. Bifurcation of a Quadratic Integrable System under Quadratic Conservative Perturbations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(2): 235-238. (in Chinese) |
[1] Li B Y, Zhang Z F. A note of a G. S. Petrov-s result about the weakened 16th Hilbert problem[J]. J Math Anal Appl, 1995,190:489~516. [2]Iliev I D. Higher order Melnikov functions for degenerate cubic Hamiltonians[J].Adv Diff Eqs, 1996, 1(4):689~708. [3]彭临平. 一类具有同宿轨的二次可积系统的开折问题 . 北京:北京大学数学系, 1997. [4]Zoladk H. Quadratic systems with centers and their perturbations .J Differential Equations, 1994, 109:223~273. [5]Arnold V I. Geometrical methods in the theory of ordinary differential equations[M]. New York:Springer-verlag,1988. [6]He Y, Li C Z. On the number of limit cycles arising from perturbations of homoclinic loops of quadratic integrable systems[J].J Diff Eqs and Dynam Sys, 1997, 5:303~316. [7]Zhang Z F, Li C Z. On the number of limit cycles of a class of quadratic Hamiltonian systems under quadratic perturbations[J]. Adv in Math, 1997, 26(5):445~460. [8]张芷芬, 李承志, 郑志明,等. 向量场的分叉理论基础[M]. 北京:高等教育出版社, 1997.
|