Jiang Libiao, Ni Qiang. Parametric design and analysis of front independent suspension of 6×6 off-road vehicle with ADAMS/View[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(02): 249-252. (in Chinese)
Citation: Chang Shinan, Han Fenghua. Performance Analysis on Hot-Air Anti-Icer of Airplane Engine Inlet[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2): 201-203. (in Chinese)

Performance Analysis on Hot-Air Anti-Icer of Airplane Engine Inlet

  • Received Date: 16 Jun 1998
  • Publish Date: 28 Feb 1999
  • Two patterns of air plane engine inlet hot-air anti-icer are introduced in this paper,one is circumferential anti-icer,the other is double skin corrugated chord direction anti-icer.Based on the thermal analysis of the two anti-icers,the heat transfer performance and temperature field of ice protected surface are compared.The results indicate that the structure of frontal anti-icer affects anti-icing effectiveness obviously for a hot-air anti-icing system,the double skin chord direction anti-icer is more efficient,but under the normal conditions,a circumferrential anti-icer can attain the goal of ice protection and its structure is more simple,so it is more practical.

     

  • 1. 裘燮纲,韩凤华编.飞机防冰系统. 北京:航空专业教材编审组,1985 2. Rosenthal H A,Nelepovitz D O. Performance of a new nose-lip hot-air anti-icing concept.AIAA-85-1117,1985 3. Al-Khalil K M,Keith T G Jr,De Witt K J. Thermal analysis of engine inlet anti-icing systems.AIAA-89-0759,1989 4. Yeoman K E. Efficiency of a bleed air powered inlet icing protective system.AIAA-94-0717,1994
  • Relative Articles

    [1]RUAN S L,DONG Z,SUN Y,et al. Parameter optimization method of thrust vector/pneumatic rudder composite control law for aircraft based on singular value method[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1332-1341 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0227.
    [2]YANG B C,HAN J F. Optimization of key parameters of electromagnetic coil launching based on uniform design experimentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):440-445 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0040.
    [3]Jinbiao Yuan, Haiyan Liu, Bodi Ma, Leyang Zhao, Honggang Gao, Zhenbao Liu. UAV Path Planning Based on Partially Observable Markov and Parameterized MPC in Uncertain Environments[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0062
    [4]CHEN Hong, YAN Jianguo, YANG Hua, ZHANG Jing, LI Wei, YANG Jing. Deep separable convolutional neural networks based on Structural Reparameterization[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0287
    [5]ZHANG W,GAO Z H,WANG C,et al. Efficient surrogate-based aerodynamic optimization with parameter-free adaptive penalty function[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1262-1272 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0451.
    [6]ZHANG Hua-bo, GUO Ying-qing, LI Gui-cai, ZHAO Wan-li, YE Peng. Modeling and parameter design methodology for component-level performance model of ducted ram air generation turbine[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0787
    [7]SONG W,WANG Q,HE G Y. Visual calculation method of wing slipstream zone area on tiltrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2492-2502 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0676.
    [8]Volume 6 Issue E-journal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(6): .
    [9]GAO Hong-xin, ZHAO Shou-gen, ZHU Jia-lin, YU Yi-hao, LIU Xin. Research on Constitutive Parameters of High-efficiency Inverted Metamorphic GaAs Triple Junction Solar Cell for Space Applications[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0651
    [10]ZHANG J,WEN C,YANG X,et al. Design of an electric drive aircraft tug control system based on ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1017-1026 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0377.
    [11]WU Y,XIE C C,YANG C. Optimal design of shape and motion parameters of a flapping wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3311-3320 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0146.
    [12]YI M H,ZHANG J R,ZHANG W X,et al. Design and parameter optimization method of compaction admittance controller for automated fiber placement[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2968-2976 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0774.
    [13]GAO Shuai, LI Yan-hong, SUN Fu-qiang. Design and optimization of warranty period for the new product with bivariate degradation processes[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0316
    [14]XU X Y,HU W H,ZHANG Y,et al. Pre-crash scenarios and AEB optimization between vehicle and two-wheeler[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):1-9 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0184.
    [15]LEI J Y,LEI Q N,LI H B,et al. A mesh parameterization method and life reliability-based optimization for turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2651-2659 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0708.
    [16]LI Z L,YUE L H,YANG J. Research on characteristics of variable speed load sensitive inlet and outlet independent control system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3132-3144 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0011.
    [17]Volume 6 Issue E-journal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): .
    [18]WU Yue, XIE Changchuan, YANG Chao, An Chao. Optimal design of motion parameters of flapping wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1324-1331. doi: 10.13700/j.bh.1001-5965.2021.0593
    [19]LYU Mengyuan, ZHAI Li, HU Guixing. Conducted electromagnetic interference of wireless charging system with bilateral LCC of electric vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2079-2086. doi: 10.13700/j.bh.1001-5965.2021.0191
    [20]LIANG Fengchao, TAN Shuang, HUANG Gang, FAN Jiankai, LIN Zhe, KANG Xiaojun. Design and implementation of a high precision 6-DOF parallel platform for a space optical remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1332-1342. doi: 10.13700/j.bh.1001-5965.2021.0224
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0505101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 24.1 %FULLTEXT: 24.1 %META: 73.2 %META: 73.2 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.6 %其他: 6.6 %上海: 1.3 %上海: 1.3 %北京: 1.3 %北京: 1.3 %南京: 1.3 %南京: 1.3 %合肥: 1.3 %合肥: 1.3 %哥伦布: 0.9 %哥伦布: 0.9 %嘉兴: 1.3 %嘉兴: 1.3 %天津: 0.9 %天津: 0.9 %张家口: 2.6 %张家口: 2.6 %扬州: 0.4 %扬州: 0.4 %杭州: 0.9 %杭州: 0.9 %江门: 0.4 %江门: 0.4 %深圳: 14.5 %深圳: 14.5 %温州: 0.4 %温州: 0.4 %漯河: 4.8 %漯河: 4.8 %福州: 0.9 %福州: 0.9 %芒廷维尤: 1.8 %芒廷维尤: 1.8 %苏瀑: 0.4 %苏瀑: 0.4 %衡阳: 0.4 %衡阳: 0.4 %西宁: 51.3 %西宁: 51.3 %西安: 3.5 %西安: 3.5 %郑州: 0.9 %郑州: 0.9 %长沙: 1.3 %长沙: 1.3 %青岛: 0.4 %青岛: 0.4 %其他上海北京南京合肥哥伦布嘉兴天津张家口扬州杭州江门深圳温州漯河福州芒廷维尤苏瀑衡阳西宁西安郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2824) PDF downloads(1116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return