Volume 24 Issue 2
Feb.  1998
Turn off MathJax
Article Contents
Cheng Jikuan, Sun Jinping, Du Yan, et al. Theory and Development of Electrical Impedance Tomography Technology[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(2): 137-140. (in Chinese)
Citation: Cheng Jikuan, Sun Jinping, Du Yan, et al. Theory and Development of Electrical Impedance Tomography Technology[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(2): 137-140. (in Chinese)

Theory and Development of Electrical Impedance Tomography Technology

  • Received Date: 07 Jan 1997
  • Publish Date: 28 Feb 1998
  • Electrical Impedance Tomography(EIT) is a new technique that forms images of electric resistivity or conductivity within the body through measuring the current or the voltage of the surface. As a mathematical physics inverse problem,EIT is a developing technique on its own feature and difficulty.This paper gives an introduction of the EIT technology in details.It includes the primary theory,technical difficulty,system analysis as well as the recent research background and trend all over the world.It introduces ACT3 to give a simple analysis realizing the EIT system.

     

  • loading
  • 1.Saacson D,Isaacson E L.Comment on Calderon's paper:"On a incerse boundary value problem".Math Comput,1989,52:553~559 2. Brown B H,Barber D C. Applied potential tomography.J Phys E Sci Instrum,1984,17:723~733 3. Shahidi A V. Impedance tomography computional analysis based on finite elements models of a cylinder and a human thorax. Am Biomed Eng,1995,23:61~69 4. Webster J G.Electrical Impedance tomography.Bristol England:Adam Hilger,1990 5. Yorkey T J,Webster J,Tompkins W J,et al.Comparing reconstruction algorithm for electrical impedance tomography.IEEE Trans Biomed Eng,1987,BME-34(11):843~852 6. Woo E J,Hua P,Webster J G,et al. A robust image reconstruction algorithm and its parallel implementation in electrical impedance tomography.IEEE Trans Med Imaging,1993,MI-12(2):137~146 7. Kyriacon G A.A reconstruction algorithm of electrical impedance tomography with optimal configuration of the driven electrodes. IEEE Trans Med Imaging,1993,MI-12(4):430~438 8. 杜\ 岩,程吉宽,柳重堪.用组合变尺度法求解电阻抗层析成像问题.中国生物医学工程学报.1997,16(2):1~7 9. 柳重堪,杜\ 岩,李久平.实现电阻抗层析成像的交错算法.电子学报,1995,23(7):11~14[ZK)] 10.Issacson et al.Comment on reconstruction algorithms.Clin Phys Physiol Meas,1992,13(suppl A):83~89 11. Issacson D. Distinguishability of conductivities by electric current computed tomography. IEEE Trans Med Imaging,1986,MI-5(2): 91~95 12. Gisser D G,Isaacson D,Newell J C, et al. Current topics in impedance imaging.Clin Phys Physiol Meas,1987,8(supp1 A):39~46 13. Hua P,Webster J G,Tompkins W J, et al. Improved method to determine optimal current in electrical impedance tomography.IEEE Trans Med Imaging,1992,MI-11(4) :488~495 14. Woo E J,Hua P,Tompkins W J,et al. Walsh function current patterns and data synthesis for electrical impedance tomography.IEEE Trans Med Imaging,MI-11(4):554 ~559 15. Lyon G M,Oakley J P. A digital signal processor based architecture for EIT data aquisition.In:ECAPT,ed.Process Tomography a strategy for Industrial Exploitation.Manchester:The Castlefield Hotel,1992.54~59 16. Gencer N G,Ider Y Z,Williamson S J. Electrical impedance tomograph: inducedcurrent imaging achieved with a multiple coil system.IEEE Trans Biomed Eng,1996,43(2):139~149 17. Cook R D,Saulnier G J,Gisser D G,et al.ACT3:a highspeed,highprecision electrical impedance tomograph.IEEE Trans Biomed Eng,1994,41(8):713~721 18. Rosell J,Murphy D,Pallas R,et al. Skin impedance from 1Hz to 1 MHz. IEEE Trans Biomed Eng,1988,35(7) 649 ~ 651 19. Hua P,Woo E J,Webster J G,et al.Using compound electrodes in electrical impedance tomography.IEEE Trans Biomed Eng,1993,40(1):29~34
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3253) PDF downloads(6599) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return