Citation: | Luo Dehan, Chen Weihai. Active Back-propagation Algorithm Based on Adjusting Error for Multilayer Feed-forward Neural Network[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(3): 350-353. (in Chinese) |
1 .Rumelhart De, McClelland Jl. Learning internal representation by error propagation.In:Rumelhart De,McClelland Jl,eds.Parallel Distributed Processing——Explorations in the Microstructure of Cognition. Vol. 1.Cambridge MA:MIT Press,1986.318~362 2. Baba N. A new approach for finding the global minimum of error function of neural networks.Neural Networks,1989,2(2):367~373 3. Hornik K, Stinhcombe M, White H.Multilayer feedforward networks are universal approximators. Neural Networks,1989,2(2):359~366 4. Minai Aa, Williams Rd.Acceleration of back propagation through learning rate and momentum adaptation.In:IEEE,eds.Proceedings of the International Joint Conference on Neural Networks.California:San Diego,1990.676~679 5. Lang Kj, Witbrock Mj. Faster learning variations on back-propagation: an empirical study.In:Toure tzky Ds,Hinton Ge,Sejnowski Tj,eds.Proc Connectionist Models Summer School. San Mateo:Morgan Kaufmann, 1988.52~59 6. Riedmiller M, Braun H. A direct adaptative method for faster backpropagation learning: the RPROP Algorithm.In:IEEE,eds.Proceedings of International Neural Networks. San francisco, 1993.586~591 7. Shiffman W, Joost M, Werner R. Optimization of the back propagation algorithm for training multilayer perceptrons.Proc European Symposium on Artificial Neural Networks, ESANN 93. Brussels,1993.97~104
|