Active-disturbance rejection control of multi-redundancy brushless DC motor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(5): 617-621. (in Chinese)
Citation: Yun Chao, Zong Guanghua, Jin Shudaet al. Study of Fatigue Strength Condition for Non-Symmetrical Circulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(6): 747-749. (in Chinese)

Study of Fatigue Strength Condition for Non-Symmetrical Circulation

  • Received Date: 20 Mar 1998
  • Publish Date: 30 Jun 1998
  • The fatigue strength condition of component parts under non-symmetrical circulation is analysed for the tranditional design of mechanism in order to infer an expression about the fatigue strength condition. In terms of material mechanics, the working safe coefficient of components under the same circle feature is found by two points on the same projecting line in the endurance limit figure. Because the combined influence coefficient of components has only an effect on the stain amplitude (the vertical coordinate),the endurance limits of materials and components can't be located on the same projecting line. In view of this,the tranditional fatigue strength condition under non-symmetrical circulation is incorrect. Through the analysis of the figure of the endurance limit of components, a correct expression about the working safe coefficient of components is obtained.And further, the error between the expressions of two strength conditions is analysed. The conclusion shows that the design according to the original fatigue strength condition would cause greater losses.

     

  • 1. 刘鸿文主编材料力学北京:高等教育出版社,1992119~134 2. 徐 灏主编机械设计手册.第2卷.北京:机械工业出版社,199160~98 3. 蒋智翔主编材料力学北京:清华大学出版社,1985299~313
  • Relative Articles

    [1]REN Liqiang, WANG Haipeng, PAN Xinlong, WAN Bing, TANG Tiantian. A complex maneuver recognition method based on wavelet time-frequency image and lightweight CNN-Transformer hybrid neural network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0745
    [2]LU S Q,GUAN F X,LAI H T,et al. Two-stage underwater image enhancement method based on convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):321-332 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1003.
    [3]TIAN Yu, LI Ruiying. An improved network two-terminal connection reliability algorithm based on state vectors[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0483
    [4]HU Gengshuo, JIAO Jian, HU Langxiao, JING Yongfeng. Reliability modeling and evaluation method of IMA under dynamic reconfiguration[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0188
    [5]SHI T X,CHEN L S,LI T S,et al. Distributed adaptive anti-disturbance control for power systems based on multi-agents[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1685-1692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0496.
    [6]YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0174.
    [7]ZHAO Jianyin, JIANG Jingwei, SUN Yuan, WEI Shuntao. Storage reliability assessment based on multivariate degradation failure and sudden failure Competition[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0601
    [8]LI Y,ZHANG X X,SUN F Q,et al. Belief reliability modeling for assembly accuracy of spaceborne SAR antenna deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):134-143 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0234.
    [9]ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341.
    [10]ZHANG Z,WANG P,ZHOU H Y. Reliability analysis of nozzle adjustment mechanism with interval distribution parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3377-3385 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0089.
    [11]CHANG Z M,LI L Y. Double-loop surrogate model for time-dependent reliability analysis based on NARX and Kriging models[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1802-1812 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0541.
    [12]WU X C,HONG L. Importance evaluation of JTC compensation capacitor based on reliability truth table[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2579-2586 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0767.
    [13]LEI J Y,LEI Q N,LI H B,et al. A mesh parameterization method and life reliability-based optimization for turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2651-2659 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0708.
    [14]MA Ji, LI Rui-ying, ZHANG Qing-yuan, KANG Rui. Research on network time reliability evaluation method based on uncertainty theory[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0191
    [15]LIU A,XIU C D. Multi-source fusion positioning method based on hierarchical optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1176-1183 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0390.
    [16]LI J,WANG L X,LI W H. MEMS gyro scope noise reduction method based on model decomposition multi-scale entropy[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2835-2840 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0745.
    [17]LIU Qiang, SHANG Shang, QIAO Tie-zhu, ZHU Jian, SHI Yi-shan. Ionospheric clutter suppression method based on improved TCN-Elman neural network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0429
    [18]SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130.
    [19]WANG Y D,SUN Y F,LEI D Y,et al. Thermal oxidation reliability and structure optimization of thin film thermocouple[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):943-948 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0318.
    [20]ZHU Qi-tao, LI Hong-shuang. A mixed reliability analysis method based on direct probability integral[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0498
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2832) PDF downloads(1175) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return