Volume 36 Issue 9
Sep.  2010
Turn off MathJax
Article Contents
Zuo Kai, Sun Tongjing, Li Zhenhua, et al. Adaptive industrial CT outlier detection and accommodation using innovation orthogonal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(9): 1103-1107. (in Chinese)
Citation: Zuo Kai, Sun Tongjing, Li Zhenhua, et al. Adaptive industrial CT outlier detection and accommodation using innovation orthogonal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(9): 1103-1107. (in Chinese)

Adaptive industrial CT outlier detection and accommodation using innovation orthogonal

  • Received Date: 12 Mar 2010
  • Publish Date: 30 Sep 2010
  • The problem of defect recognition in industrial CT(computerized tomography) projection image was discussed based on the innovation orthogonality principle. Projection image was modeling in a 2-D state space structure. By analyzing the innovation orthogonality of Kalman filtering algorithm, a dynamic evaluation function and the corresponding threshold on the determination of image region and grey scale were defined respectively. A new adaptive defect recognition method was obtained. Based on 2-D Kalman filter, the proposed method was implemented for defecting image recognition adaptively which can improve the efficiency and accuracy for CT image recognition. An experiment was given to illustrate the effectiveness of the proposed method.

     

  • loading
  • [1] Cios K J,Shin I.Image recognition neural network[J].Neurocomputing,1995,7(2):159-185 [2] 李弼程,彭天强,彭波.智能图像处理技术[M].北京:电子工业出版社,2004 Li Bicheng,Peng Tianqiang,Peng Bo.Intelligent image processing technology[M].Beijing:Electronics Industry Press,2004(in Chinese) [3] 王琪,万中南,韩俊伟.基于图像中心矩和特征向量的目标识别方法[J].激光与红外,2009,39(8):895-898 Wang Qi,Wan Zhongnan,Han Junwei.Novel method of target recognition based on changeless rules and image feature vector[J].Laser & Infrared,2009,39(8):895-898(in Chinese) [4] Yeom S,Javidi B,Roh Y J,et al.Three-dimensional object recognition using x-ray imaging[J].Optical Engineering,2008,44(2):1-23 [5] Alaknanda,Anand R S,Kumar P.Flaw detection in radiographic weldment images using morphological watershed segmentation technique[J].NDT and E International,2009,42(1):2-8 [6] Liao T W.Fuzzy reasoning based automatic inspection of radiographic welds:weld recognition[J].Journal of Intelligent Manufacturing,2004,15(1):69-85 [7] 张晓光,林家骏.X射线检测焊缝的图像处理与缺陷识别[J].华东理工大学学报:自然科学版,2004,30(2):199-202 Zhang Xiaoguang,Lin Jiajun.Research of image processing and defect recognition for industrial radiographic weld inspection[J].Journal of East China University of Science and Technology:Natural Science,2004,30(2):199-202(in Chinese) [8] 高向东,丁度坤,赵传敏.用于焊缝位置识别的视觉模型设计与试验[J].机械工程学报,2009,45(4):136-141 Gao Xiangdong,Ding Dukun,Zhao Chuanmin.Design and experiment of visual model for detecting weld position[J].Journal of Mechanical Engineering,2009,45(4):136-141(in Chinese) [9] Woods J.Two-dimensional Kalman filtering[M].Brelin:Springer Berlin/Heidelberg,1981:155-205 [10] Kaufman H,Woods J.Estimation and identification of two-dimensional images[J].IEEE Transactions on Automatic Control,1983,28(7):745-756 [11] 庄天戈.CT原理与算法[M].上海:上海交通大学出版社,1992 Zhuang Tiange.CT theory and algorithm[M].Shanghai:Shanghai Jiao Tong University Press,1992(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(4601) PDF downloads(1077) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return