Active-disturbance rejection control of multi-redundancy brushless DC motor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(5): 617-621. (in Chinese)
Citation: Ma Feng, Qiu Wanhua. Modeling of emergency management in altitude simulation testing with Petri net and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(10): 1207-1212. (in Chinese)

Modeling of emergency management in altitude simulation testing with Petri net and its application

  • Received Date: 23 Jun 2010
  • Publish Date: 31 Oct 2010
  • An emergency management workflow strategy was constructed for altitude simulation testing, and a Petri net model of the strategy was modeled. The model mainly comprises an urgency stop program and a crisis stop program. The urgency stop program is aimed to ensure safety of the tested engine and the testing facilities, simultaneously, is got attention to quickly stop, so it is basically composed of some stages in series. But the crisis stop program is targeted for a quick response, therefore, its various stages is principally in parallel. By analyzing the model, it was demonstrated that the model is reachable, sound, with free choice, well-structure, and S-coverable characteristics. According to the Petri net model, an emergency management for an aero-engine in altitude simulation testing was trained, and the response time was obtained in each stage. Key stages that effect the response time of emergency management were found in the crisis stop program of emergency management operation by analyzing the time data. In the follow, it was found that maximum benefit come from a compromise between ensuring safety of tested engine, testing facilities and the response time according to emergency event level in the urgency stop program. Modified emergency program and training effectively reduced the emergency response time in the key stage.

     

  • [1] 杜鹤龄.发动机高空模拟[M].北京:国防工业出版社,2002 Du Heling.Altitude simulation of aero-engine[M].Beijing:Defence Industry Press,2002(in Chinese) [2] 袁崇义.Petri网原理与应用[M].北京:电子工业出版社,2005 Yuan Chongyi.Theory and application of Petri net[M].Beijing:Publishing House of Electronics Industry,2005(in Chinese) [3] Madjid Tavana.Dynamic process modelling using Petri nets with applications to nuclear power plant emergency management[J].Int J Simulation and Process Modelling,2008,4(2):130-138 [4] Wil van der Aalst,Kees van Hee.WorkFlow management models,methods,and systems[M].Cambridge:MIT Press,2002 [5] 杜鹤龄.我国大型连续式高空台与国际标准的衔接问题[J].燃气涡轮试验与研究,1995,8(2):7-11 Du Heling.Link of the large-scale continuous pumping altitude test facility in China with in international standards[J].Gas Turbine Experiment and Research,1995,8(2):7-11(in Chinese) [6] Kim C,Yoon M,Yang S,et al.An altitude test facility for small jet engines .AIAA-2001-3680,2001 [7] Jun Y,Yang I,Nam S,et al.Uncertainty analysis and improvement of an altitude test facility for small jet engines .AIAA-2002-2791,2002 [8] Braig W.Transient aeroengine testing at stuttgart altitude test facility .AIAA-ISABE 99-7074,1999 [9] Tagashira T,Koh M,Sugiyama N.Dynamic characteristic tests of single spool turbojet engine using altitude test facility .AIAA-2007-5012,2007 [10] 杜彦华,范玉顺.扩展模糊时间工作流网的建模与仿真研究[J].计算机集成制造系统,2007,13(12):2358-2364 Du Yanhua,Fan Yushun.Modeling and simulation of extended fuzzy timing workflow nets[J].Computer Integrated Manufacturing Systems,2007,13(12):2358-2364 (in Chinese)
  • Relative Articles

    [1]REN Liqiang, WANG Haipeng, PAN Xinlong, WAN Bing, TANG Tiantian. A complex maneuver recognition method based on wavelet time-frequency image and lightweight CNN-Transformer hybrid neural network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0745
    [2]LU S Q,GUAN F X,LAI H T,et al. Two-stage underwater image enhancement method based on convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):321-332 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1003.
    [3]TIAN Yu, LI Ruiying. An improved network two-terminal connection reliability algorithm based on state vectors[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0483
    [4]HU Gengshuo, JIAO Jian, HU Langxiao, JING Yongfeng. Reliability modeling and evaluation method of IMA under dynamic reconfiguration[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0188
    [5]SHI T X,CHEN L S,LI T S,et al. Distributed adaptive anti-disturbance control for power systems based on multi-agents[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1685-1692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0496.
    [6]YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0174.
    [7]ZHAO Jianyin, JIANG Jingwei, SUN Yuan, WEI Shuntao. Storage reliability assessment based on multivariate degradation failure and sudden failure Competition[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0601
    [8]LI Y,ZHANG X X,SUN F Q,et al. Belief reliability modeling for assembly accuracy of spaceborne SAR antenna deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):134-143 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0234.
    [9]ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341.
    [10]ZHANG Z,WANG P,ZHOU H Y. Reliability analysis of nozzle adjustment mechanism with interval distribution parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3377-3385 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0089.
    [11]CHANG Z M,LI L Y. Double-loop surrogate model for time-dependent reliability analysis based on NARX and Kriging models[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1802-1812 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0541.
    [12]WU X C,HONG L. Importance evaluation of JTC compensation capacitor based on reliability truth table[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2579-2586 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0767.
    [13]LEI J Y,LEI Q N,LI H B,et al. A mesh parameterization method and life reliability-based optimization for turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2651-2659 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0708.
    [14]MA Ji, LI Rui-ying, ZHANG Qing-yuan, KANG Rui. Research on network time reliability evaluation method based on uncertainty theory[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0191
    [15]LIU A,XIU C D. Multi-source fusion positioning method based on hierarchical optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1176-1183 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0390.
    [16]LI J,WANG L X,LI W H. MEMS gyro scope noise reduction method based on model decomposition multi-scale entropy[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2835-2840 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0745.
    [17]LIU Qiang, SHANG Shang, QIAO Tie-zhu, ZHU Jian, SHI Yi-shan. Ionospheric clutter suppression method based on improved TCN-Elman neural network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0429
    [18]SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130.
    [19]WANG Y D,SUN Y F,LEI D Y,et al. Thermal oxidation reliability and structure optimization of thin film thermocouple[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):943-948 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0318.
    [20]ZHU Qi-tao, LI Hong-shuang. A mixed reliability analysis method based on direct probability integral[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0498
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3420) PDF downloads(818) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return