Liu Jiarun, Shen Gongzhang. Attitude control based on inverse dynamics and online parameter identification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(02): 111-115. (in Chinese)
Citation: Cui Shuxin, Han Yuqi, Gao Geet al. CE/SE method applied to flows around 2D airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(1): 21-24. (in Chinese)

CE/SE method applied to flows around 2D airfoil

  • Received Date: 25 Nov 2009
  • Publish Date: 31 Jan 2011
  • A numerical scheme for solving Euler equations was conducted to investigate inviscid flows around 2D airfoil according to space-time conservation element and solution element (CE/SE) method. Courant number insensitive scheme (CNIS) used to avoid the contaminations of numerical dissipation induced by very small Courant number, improved the accuracy combining with local time-stepping(LTS) method that canceled the disparity in Courant number at non-uniform meshes. Two dimensional numerical simulations for NACA0012 airfoil were implemented. The results show that it is in agreement with the published data by AGARD, which will provide sufficient preparations for the application of CE/SE method to airfoil at more fields.

     

  • [1] Chang S C.The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations[J].Journal of Computational Physics,1995,119(2):295-324 [2] Wang X Y,Chang S C,Jorgenson P.Accuracy study of the space-time CE/SE method for computational aeroacoustics problems involving shock .AIAA-2000-0474,2000 [3] Zhang Z C,Yu S T,Chang S C.A space-time conservation element and solution element method for solving the two-and three-dimensional unsteady Euler equations using quadrilateral and hexahedral meshes[J].Journal of Computational Physics,2002,175:168-199 [4] Chang S C.Courant number insensitve CE/SE schemes .AIAA-2002-3890,2002 [5] Chang C L.Time-accurate,unstructured-mesh Navier-Stokes computations with the space-time CESE method .AIAA-2006-4780,2006 [6] Yen J C,Wagner D A.Computational aeroacoustics using a simplified Courant number insensitive CE/SE method .AIAA-2005-2820,2005 [7] Blazek J.Computational fluid dynamics:principles and applications[M].2nd ed.Germang:Elsevier,2005:281-283 [8] Usab W J,Murman E M.Embedded mesh solution of the Euler equation using a multiple-grid method .AIAA-83-1946,1983 [9] Chang S C,Zhang Z C,Yu S T,et al.A unified wall boundary treatment for viscous and inviscid flows in the CE/SE method .NASA/TM-2000-210517,2000 [10] Wang X Y,Chang S C.A 2D non-splitting unstructured triangular mesh Euler solver based on the space-time conservation element and solution element method[J].Computational Fluid Dynamics Journal,1999,8(2):309-325 [11] Lock R C.Test cases for numerical methods in two-dimensional transonic flows .Advisory Group for Aerospace Research and Development (AGARD)-R-575,1970 [12] Adam D L,Her M T.Solution acceleration for steady flow using the conservation element and solution element(CE/SE) method .AIAA-2003-75,2003
  • Relative Articles

    [1]LI Huan, CUI Pengcheng, JIA Hongyin, GONG Xiaoquan, WU Xiaojun. Numerical Simulation of TSTO Interstage Separation Considering Constraint Force[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0839
    [2]XIAO Y,LI Y,LI D S,et al. Influence of curing stress relaxation on profile accuracy of composites tools[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):824-832 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0109.
    [3]YANG Yisong, LI Jianbo, DUAN Dengyan. Dynamic model of high confidence tilt-hinge rotor based on Newton-Euler recurrence method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0230
    [4]YU Y B,HE Z Q,HE X F,et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2585-2594 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0639.
    [5]ZHANG Lei, LI Haisheng, DU Junping, WU Wei. Asymmetric Mutual Purification under Noisy Labels for Cross-Domain Person Re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0442
    [6]FAN X,CHENG Z H,LI S X,et al. Effect of critical eccentricity on forming accuracy of tubes in 3D free bending process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):208-215 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0221.
    [7]LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693.
    [8]LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813.
    [9]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [10]HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0223.
    [11]ZHANG Pei-hong, JIA Hong-yin, ZHAO Jiao, WU Xiao-jun, ZHOU Gui-yu, ZHANG Yao-bing. Numerical simulation research on opposing jet interaction characteristics of rocket inverse flight[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0710
    [12]SHEN X B,ZHAO W Z,LIN G P,et al. Accuracy analysis of Eulerian method for droplet impingement characteristics under aircraft icing conditions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1912-1921 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0607.
    [13]XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494.
    [14]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [15]HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335.
    [16]PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152.
    [17]ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154
    [18]WANG Weiqi, XING Yuming, ZHENG Wenyuan, HAO Zhaolong. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140
    [19]GUO Qi, SHEN Xiaobin, LIN Guiping, ZHANG Shijuan. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081
    [20]WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3110) PDF downloads(1100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return