Zhang Zhimin, Li Jinqiu, Guo Yanyanget al. Computational Model of Progressive Failure in Composite Sandwich Structures[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 565-568. (in Chinese)
Citation: Tao Guoquan, Wei Yuchen, Lü mingyun, et al. Modal tests and properties analysis on truss structure of large scale carbon fiber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 316-319. (in Chinese)

Modal tests and properties analysis on truss structure of large scale carbon fiber

  • Received Date: 05 Nov 2010
  • Publish Date: 31 Mar 2011
  • Based on stochastic subspace system identification method,the modal properties of the truss structure of large scale, light weight, high strength, and force bearing type carbon fiber composites were investigated by ambient excitation. On basis of the characteristics of the truss structure itself, three fundamental assumptions were forwarded. In conjunction with the constraint conditions of the truss structure in practical applications, a modal test scheme for the truss of large scale carbon fiber composites was designed. Through detailed analysis of the test results, the characteristics of frequency, damp, and vibration mode were summarized. By hammer impacts test and finite element method, the test results were comparatively analyzed. It is proved that the three fundamental assumptions are reasonable, the test scheme is effective, the analytical results of the test are reliable. The research results are of essential meaning to the design of aerostat structures and their health monitoring.

     

  • [1] Wilson J C,Liu T.Ambient vibration measurements on a cable-stayed bridge[J].Earthquake Engineering & Structural Dynamics,1991,20(8):723-747 [2] Gao Y,Spencer B F.Damage localization under ambient vibration using changes in flexibility[J].Earthquake Engineering and Engineering Vibration,2002,1(1):136-144 [3] Bernal D,Gunes B.Observer Kalman and subspace identification of the UBC benchmark structural model // Proceedings of the 14th ASCE Engineering Mechanics Conference.Austin: ,2000:21-24 [4] Kaminski P C.The approximate location of damage through the analysis of natural frequencies with artificial neutral networks[J].Proceedings of the Institution of Mechanical Engineers,Part E:Journal of Process Mechanical Engineering,1995,209(E2):117- 123 [5] James G H Ⅲ,Carne T G,Lauffer J P.The natural excitation technique for modal parameter extraction from operating structures .SAND92-1666,1993 [6] Van Overschee P,De Moor B.Subspace identification for linear systems:theory,implementation and applications[M].Dordrecht,Netherlands:Kluwer Academic Publishers,1996 [7] 续秀忠,华宏星,陈兆能.基于环境激励的模态参数辨识方法综述[J].振动与冲击,2002,21(3):1-5 Xu Xiuzhong,Hua Hongxing,Chen Zhaoneng.Review of modal identification method based on ambient excitation[J].Journal of Vibration and Shock,2002,21(3):1-5(in Chinese) [8] 肖祥,任伟新.实时工作模态参数数据驱动随机子空间识别[J].振动与冲击,2009,28(8):148-153 Xiao Xiang,Ren Weixin.Improved data-driven stochastic subspace identification of online operational modal parameters [J].Journal of Vibration and Shock,2009,28(8):148-153(in Chinese)
  • Relative Articles

    [1]DENG H W,HOU Y J,ZHANG C Y,et al. Mental fatigue recognition algorithm based on cascade forest and multi-modal fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):584-593 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0030.
    [2]PEI H N,CHEN Y F,BAI Z H,et al. Analysis of high load injury of thoracolumbar spine in pilots during ejection process[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):102-112 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0957.
    [3]HAN Y,SUN B B,WANG J G,et al. Target person analysis based on critical node recognition algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2074-2082 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0588.
    [4]LI J,YANG D K,HONG X B,et al. Soil moisture algorithm testing of interference signal inversion with GNSS linearly polarized antenna[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):874-885 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0282.
    [5]LAI J Y,GUAN W Q,LUO G Z,et al. Design of rectangular cross-section spring anti-reverse device for a certain type of aviation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1868-1876 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0750.
    [6]YANG Gong-peng, ZHOU Zheng-gan, MA Teng-fei, WANG Jun, LI Yang, ZHOU Wen-bin. Research on finite element simulation modeling for ultrasonic testing of coarse-grained materials[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0676
    [7]CHEN Shi, XU He-ming, SUN Kai, XU Yi-han, ZHANG Yi-shang. Prediction of creep strain of turbine blades based on finite element nodes[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0639
    [8]GENG Z W,ZHANG J,KONG N,et al. Design and analysis of space repeatable mechanical locking and electromagnetic unlocking mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3947-3956 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0918.
    [9]YANG Z J,ZHANG C F,ZHAO R J,et al. Thermal deformation analysis and experimental verification of spatial deployable antenna hinge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):243-249 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0219.
    [10]YANG B,HE Y Z,XU F,et al. Using improved genetic algorithm for software fault localization aided test case generation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2279-2288 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0524.
    [11]LI T S,WANG S K,WU Q,et al. Interface adjustment of aerospace-grade T800 carbon fiber composite material[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2011-2020 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0619.
    [12]XU M R,ZENG B Y,XIONG X,et al. Tensile fatigue properties of carbon fiber laminates in hygrothermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1614-1622 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0565.
    [13]HAN X,WANG Y X,CHENG X C,et al. A decentralized multi-sensor fusion estimator using finite memory buffers[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):335-343 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0240.
    [14]SUN Xiao-kun, CHEN Yang, HU Can-bin, XIANG De-liang. SAR target recognition method under limited measured sample conditions[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0648
    [15]HE T Y,DONG Y,WANG H,et al. Design and optimization of modular parabolic deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2473-2481 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0652.
    [16]XIAO Yao, LI Yong, LI Dong-sheng, WANG Lei, JIANG Chao. Influence analysis of curing stress and stress relaxation on profile accuracy of carbon fiber reinforced composites tools[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0109
    [17]YANG Z J,WANG G,ZHAO R J,et al. Dynamic analysis of deployment impact of trim-wing mechanism of Mars entry capsules[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):422-429 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0234.
    [18]YANG Lan, AN Chao, XIE Changchuan, YANG Chao. Gust load alleviation analysis based on vortex lattice method in state-space form[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1200-1209. doi: 10.13700/j.bh.1001-5965.2021.0023
    [19]GONG Xiaoquan, WU Xiaojun, TANG Jing, LI Ming, ZHANG Jian. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1889-1898. doi: 10.13700/j.bh.1001-5965.2021.0046
    [20]FU Baiheng, WANG Weijie, WANG Yuanqin, FAN Yahong, NIE Chen, JIA Haipeng. Design and analysis of high precision for spherical Lorentz force magnetic bearing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2222-2229. doi: 10.13700/j.bh.1001-5965.2021.0103
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3822) PDF downloads(1343) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return