Citation: | Tao Guoquan, Wei Yuchen, Lü mingyun, et al. Modal tests and properties analysis on truss structure of large scale carbon fiber[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3): 316-319. (in Chinese) |
[1] Wilson J C,Liu T.Ambient vibration measurements on a cable-stayed bridge[J].Earthquake Engineering & Structural Dynamics,1991,20(8):723-747 [2] Gao Y,Spencer B F.Damage localization under ambient vibration using changes in flexibility[J].Earthquake Engineering and Engineering Vibration,2002,1(1):136-144 [3] Bernal D,Gunes B.Observer Kalman and subspace identification of the UBC benchmark structural model // Proceedings of the 14th ASCE Engineering Mechanics Conference.Austin: ,2000:21-24 [4] Kaminski P C.The approximate location of damage through the analysis of natural frequencies with artificial neutral networks[J].Proceedings of the Institution of Mechanical Engineers,Part E:Journal of Process Mechanical Engineering,1995,209(E2):117- 123 [5] James G H Ⅲ,Carne T G,Lauffer J P.The natural excitation technique for modal parameter extraction from operating structures .SAND92-1666,1993 [6] Van Overschee P,De Moor B.Subspace identification for linear systems:theory,implementation and applications[M].Dordrecht,Netherlands:Kluwer Academic Publishers,1996 [7] 续秀忠,华宏星,陈兆能.基于环境激励的模态参数辨识方法综述[J].振动与冲击,2002,21(3):1-5 Xu Xiuzhong,Hua Hongxing,Chen Zhaoneng.Review of modal identification method based on ambient excitation[J].Journal of Vibration and Shock,2002,21(3):1-5(in Chinese) [8] 肖祥,任伟新.实时工作模态参数数据驱动随机子空间识别[J].振动与冲击,2009,28(8):148-153 Xiao Xiang,Ren Weixin.Improved data-driven stochastic subspace identification of online operational modal parameters [J].Journal of Vibration and Shock,2009,28(8):148-153(in Chinese)
|
[1] | HOU Z Q,ZHAO J X,CHEN Y,et al. Cascaded object drift determination network for long-term visual tracking[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2240-2252 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0504. |
[2] | WANG Z Y,YIN J H,HUANG B B,et al. A rotated content-aware retina network for SAR ship detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2498-2505 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0394. |
[3] | CHENG D Q,FAN S M,QIAN J S,et al. Coordinate-aware attention-based multi-frame self-supervised monocular depth estimation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2218-2228 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0417. |
[4] | BAI C P,ZHANG S Y,ZHANG X,et al. Spaceborne particle identification platform and application based on convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1313-1323 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0171. |
[5] | LIU Y N,ZHANG Q,WANG R,et al. Improved YOLOv7 method for aerial small target detection in aerial photography[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2506-2512 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0411. |
[6] | ZHANG Z,YI H H,ZHENG J. Few-shot object detection of aerial image based on language guidance vision[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2338-2348 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0491. |
[7] | ZHU J Z,WANG C,LI X K,et al. A deep reinforcement learning based on discrete state transition algorithm for solving fuzzy flexible job shop scheduling problem[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1385-1394 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0211. |
[8] | ZHANG D D,WANG C P,FU Q. Camouflaged object detection network based on human visual mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2553-2561 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0511. |
[9] | LU S Q,GUAN F X,LAI H T,et al. Two-stage underwater image enhancement method based on convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):321-332 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1003. |
[10] | MENG W J,AN W,MA S G,et al. An object detection algorithm based on feature enhancement and adaptive threshold non-maximum suppression[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2349-2359 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0534. |
[11] | CHAI G Q,BO X S,LIU H J,et al. Self-supervised scene depth estimation for monocular images based on uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3780-3787 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0943. |
[12] | WANG J,LI P T,ZHAO R F,et al. A person re-identification method for fusing convolutional attention and Transformer architecture[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):466-476 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0456. |
[13] | HOU Z Q,MA J Y,HAN R X,et al. A fast long-term visual tracking algorithm based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2391-2403 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0645. |
[14] | LI Y H,YU H K,MA D F,et al. Improved transfer learning based dual-branch convolutional neural network image dehazing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):30-38 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0253. |
[15] | JIANG Y,CHEN M Y,YUAN Q,et al. Departure flight delay prediction based on spatio-temporal graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1044-1052 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0415. |
[16] | ZHOU H,HOU Q Y,BIAN C J,et al. An infrared small target detection network under various complex backgrounds realized on FPGA[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):295-310 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0221. |
[17] | DAI P Z,LIU X,ZHANG X,et al. An iterative pedestrian detection method sensitive to historical information features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2493-2500 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0665. |
[18] | SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130. |
[19] | LI Zheyang, ZHANG Ruyi, TAN Wenming, REN Ye, LEI Ming, WU Hao. A graph convolution network based latency prediction algorithm for convolution neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2450-2459. doi: 10.13700/j.bh.1001-5965.2021.0149 |
[20] | HU Haimiao, SHEN Liuqing, GAO Likun, LI Mingzhu. Object detection algorithm guided by motion information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1710-1720. doi: 10.13700/j.bh.1001-5965.2022.0291 |