Tang Ani. Technique of aircraft loads spectrum statistics based on kernel density estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(6): 654-657,664. (in Chinese)
Citation: Jin Xianzhe, Wu Sentang. Output feedback eigenstructure assignment based on stochastic robustness analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(4): 487-491. (in Chinese)

Output feedback eigenstructure assignment based on stochastic robustness analysis

  • Received Date: 19 Oct 2010
  • Publish Date: 30 Apr 2011
  • An approach for output feedback eigenstructure assignment(EA) of linear multivariable system with parameter uncertainty was presented based on stochastic robustness analysis (SRA), which was used to solve the problem of the eigenstructure robustness. With SRA, the robustness measures of closed-loop control system could be achieved accurately. And the direct relationship between the control system design specifications and the design parameters was established. The optimization algorithm was employed to maximize the control system robustness through trading off between the stability and the performances. At last, SRA-EA was applied to the decoupled design for lateral control system of the hypersonic vehicle. The numerical simulations demonstrated the effectiveness of the presented approach.

     

  • [1] 刘小刚,吴梅,安锦文.基于特征结构配置/定量反馈理论的飞行控制系统设计研究[J].弹箭与制导学报,2006,26(1):340-343 Liu Xiaogang,Wu Mei,An Jinwen.Application of EA based QFT in design of lateral flight control system[J].Journal of Projectiles,Rockets,Missiles and Guidance,2006,26(1):340-343(in Chinese) [2] 李帆,周凤岐,周军.导弹基于特征结构配置的输出反馈解耦控制[J].弹箭与制导学报,2001,21(3):5-8 Li Fan,Zhou Fengqi,Zhou Jun.Decoupling control of missile by output feedback eigenstructure assignment[J].Journal of Projectiles,Rockets,Missiles and Guidance,2001,21(3):5-8(in Chinese) [3] Seo Young Bong,Choi Jae Weon.Eigenstructure assignment considering probability of instability with flight control application[J].International Journal of Control,Automation,and Systems,2007,5(6):607-613 [4] 王德军,李元春.线性系统的鲁棒特征结构配置[J].吉林大学学报:信息科学版,2004,22(5):476-480 Wang Dejun,Li Yuanchun.Robust eigenstructure assign-ment for a class of linear systems[J].Journal of Jilin University:Information Science Edition,2004,22(5):476-480 (in Chinese) [5] 潘常春,陈欣.基于鲁棒特征结构配置的无人机直接侧力控制[J].飞行力学,2004,22(3):84-87 Pan Changchun,Chen Xin.UAV direct side force controllaw design with robust eigenstructure assignment[J].Flight Dynamics,2004,22(3):84-87(in Chinese) [6] 黄玲,段广仁,于海华.广义二阶动力学系统的鲁棒特征结构配置[J].控制理论与应用,2009,26(3):238-242 Huang Ling,Duan Guangren,Yu Haihua.Robust eigenstructure assignment in descriptor second-order linear systems[J].Control Theory & Application,2009,26(3):238-242(in Chinese) [7] Seo Young Bong,Choi Jae Weon,Man Hyung Lee.Eigenstructure assignment for LTI systems with stochastic parameter variations // Proceedings of the 2000 American Control Conference.Chicago:ACC,2000:3812-3816 [8] Ryan Laura Ray.Stochastic robustness of linear multivariable control systems:towards comprehens-ive robustness analysis .Princeton:Department of Mechanical and Aerospace Engineering,Princeton University,1991 [9] 吴森堂.飞航导弹制导控制系统随机鲁棒分析与设计[M].北京:国防工业出版社,2010:8-23 Wu Sentang.Stochastic robustness analysis and design for guidance and control system of winged missile [M].Beijing:National Defense Industry Press,2010:8-23(in Chinese) [10] Stevens Brian L,Lewis Frank L.Aircraft control and simulation[M].New York:Wiley,1992:347-353
  • Relative Articles

    [1]WANG Shiqi, LU Hui, ZHANG Yuxuan. Hexagonal grid sampling method for low-dimensional decision boundary identification[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0526
    [2]ZHAO M,JIA H,WU S Q,et al. Mechanical characteristics of flexible connection technology for Mars parachute[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3815-3824 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0932.
    [3]BU Xueqin, LIU Yiming, LIN Guiping, YU Jia, YU Kunyang. Review of key technologies of on-board intelligent oxygen system[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0615
    [4]QIN Honglei, XU Zhenbo, DU Yansong. Dynamic relative positioning technology based on LEOs-SOP/INS/JTIDS combination[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0672
    [5]ZHAO S,LIN L,LI Z,et al. Deck motion prediction and compensation technology based on BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2772-2780 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0743.
    [6]SU F,WU S H,LIU Y P. Application of new photoelastic technology based on pixelated polarization camera[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2432-2438 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0667.
    [7]KANG Z X,ZHOU D,LI H X,et al. Dynamic planning technology of civil spare parts based on aircraft state[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):276-285 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0177.
    [8]ZHANG Fan, LIU Wan, GUO Yong-yan, CENG Zhi-chun, HE Qian-wei, ZHAO Zhong. The application and practice of black box testing technology in Fluid Simulation Software[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0621
    [9]DUAN Jizhong, XIE Yunshuang. Automatic segmentation method of undersampled magnetic resonance imaging based on dual residual networks[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0554
    [10]HE F D,WU B,LI Z R. Zone loading technology for aircraft load calibration test[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2867-2872 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0742.
    [11]SHANG K,ZHANG Y L,ZHANG F Z. Architecture of smart parking lot based on digital twin technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2029-2038 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0624.
    [12]ZHAO Q,ZHEN Z Y,GONG H J,et al. UAV formation control based on dueling double DQN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2137-2146 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0601.
    [13]XU F J,ZHOU X,ZHAO J S,et al. Conception and development of software-defined satellite technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1543-1552 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0562.
    [14]ZHOU B J,YU C Q,TAN L L,et al. Fast leveling control technology of vehicle platform based on interference compensation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1495-1503 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0447.
    [15]CHEN X,TIAN X,LUO R D,et al. Design of message authentication based on TESLA protocol for BDSBAS[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2289-2298 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0669.
    [16]ZHOU Bin, QU Duo, YANG Xiao-yu, KONG Hua, TU Yong-guang, XU Guo-ning. Advanced perovskite photovoltaic technology for space applications[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0938
    [17]GUO Tai, QIAN Xin, GONG Qi, REN Wenming, YANG Shuanbao, XU Qinggang. Methodology for model based verification requirements capturing and application in civil aircraft development[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1933-1942. doi: 10.13700/j.bh.1001-5965.2021.0047
    [18]QIN Honglei, LI Zhiqiang, ZHAO Chao. Fusion positioning based on Iridium/ORBCOMM signals of opportunity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1845-1853. doi: 10.13700/j.bh.1001-5965.2021.0041
    [19]WANG Qionghua, YUAN Rongying, LIU Chao. Microscopic imaging technology with electrowetting liquid lens[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1774-1781. doi: 10.13700/j.bh.1001-5965.2022.0302
    [20]DING Shuiting, SHAO Longtao, ZHAO Shuai, ZHU Kun, DU Farong, ZHOU Yu. Fuel injection technology of heavy fuel aircraft piston engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1630-1642. doi: 10.13700/j.bh.1001-5965.2022.0012
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.3 %FULLTEXT: 25.3 %META: 73.0 %META: 73.0 %PDF: 1.7 %PDF: 1.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.8 %其他: 9.8 %上海: 0.8 %上海: 0.8 %北京: 3.6 %北京: 3.6 %十堰: 0.4 %十堰: 0.4 %南京: 0.8 %南京: 0.8 %哥伦布: 0.4 %哥伦布: 0.4 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.6 %天津: 0.6 %宣城: 0.4 %宣城: 0.4 %库比蒂诺: 1.5 %库比蒂诺: 1.5 %张家口: 1.1 %张家口: 1.1 %徐州: 0.2 %徐州: 0.2 %昆明: 0.4 %昆明: 0.4 %格兰特县: 0.4 %格兰特县: 0.4 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.2 %沈阳: 0.2 %深圳: 13.3 %深圳: 13.3 %温州: 0.4 %温州: 0.4 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.9 %石家庄: 0.9 %纽约: 0.2 %纽约: 0.2 %芒廷维尤: 39.8 %芒廷维尤: 39.8 %西宁: 20.3 %西宁: 20.3 %西安: 0.6 %西安: 0.6 %诺沃克: 0.4 %诺沃克: 0.4 %贵阳: 0.4 %贵阳: 0.4 %运城: 0.8 %运城: 0.8 %连云港: 0.2 %连云港: 0.2 %郑州: 0.6 %郑州: 0.6 %长沙: 0.4 %长沙: 0.4 %其他上海北京十堰南京哥伦布嘉兴大连天津宣城库比蒂诺张家口徐州昆明格兰特县武汉沈阳深圳温州漯河石家庄纽约芒廷维尤西宁西安诺沃克贵阳运城连云港郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2946) PDF downloads(1161) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return