Song Yuwang, Xi Ping. Research and application of analysis leads design method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8): 980-985. (in Chinese)
Citation: Chen Jie, Zhou Shaolei, Song Zhaoqinget al. Nonlinear modelling and open-loop dynamatics characteristics for one hypersonic aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7): 827-832. (in Chinese)

Nonlinear modelling and open-loop dynamatics characteristics for one hypersonic aircraft

  • Received Date: 10 Aug 2010
  • Publish Date: 30 Jul 2011
  • Considering that the hypersonic aircraft nonlinear dynamatic system owns the characteristics of nonlinear output, highly coupled of state vector, a novel sliding surface observer and controller design based on Lyapunov function was presented. During the course of observer design, overload output sliding surface was adopted to consrtruct Lyapunov function to guarantee the astringency of observer, and observer plus matrix could be gotten. Then, dynamic surface adaptive backstepping was adopted to design control law, multi-layers nerual network adjust function was introduced to compensate the influence from the uncertain, and the robust terms were designed to solve the problem from approach error. The stability analysis and simulations demonstrate the good performance of the controller.

     

  • [1] Stephen A W,Timothy R M.Measurement uncertainty and feasibility study of a flush airdata system for a hypersonic flight experiment .NASA TM-4627,1994 [2] Besnard L,Shtessel Y B,Landrum B.Control of a quadrotor vehicle using sliding mode disturbance observer //Collection of Technical Papers-AIAA Guidance,Navigation,and Control Conference 2007.Reston:American Institute of Aeronautics and Astronautics Inc,2007,1:58-77 [3] Charles E H,Shtessel Y B.Sliding mode disturbance observer-based control for a reusable launch vehicle[J].Guidance,Control,and Dynamics,2006,29(6):1315-1317 [4] Utkin V,Guldner J,Shi J.Sliding mode control in electromechanical systems[M].London:Taylor and Francis,1999:51-145 [5] Massey T,Shtessel Y.Continuous traditional and high order sliding modes for satellite formation control[J].Journal of Guidance,Control,and Dynamics,2005,28(4):826-831 [6] Sang Minkim,Woo Yonghan,Sung Joongkim.Design of a new adaptive sliding mode observer for sensorless induction motor drive[J].Electric Power Systems Research,2004,70(1):16-22 [7] Chee Pintan,Christopher Edwards.Sliding mode observers for robust fault reconstruction in nonlinear systems[J].Nonlinear and Adaptive Control,2003:373-383 [8] Thienel J,Sanner R M.A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise[J].Automatic Control,2003,48(11):2011-2015 [9] Slegers N,Costello M.Variable structure observer for control bias on unmanned air vehicles[J].Journal of Guidance,Control,and Dynamics,2007,30(1):281-286 [10] Shaughnessy J D,Pinckney S Z,McMinn J D,et al.Hypersonic vehicle simulation model:winged-cone configuarion .NASA TM-102610,1990 [11] Keshmiri S,Colgren R,Mirmirani M.Development of an aerodynamic database for a generic hypersonic air vehicle //Collection of Technical Papers-AIAA Guidance,Navigation,and Control Conference.Reston:American Institute of Aeronautics and Astronautics Inc,2005,5:3978-3998 [12] Lewis L F,Yesildirek A,Liu K.Multilayer neural net robot controller with guaranteed tracking performance[J].IEEE Translations on Neural Networks,1996,7(2):388-399
  • Relative Articles

    [1]WANG H,LI X K,ZHANG H L,et al. Multi-UAV stereoscopic inclusion control based on dynamic scale observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):655-667 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0026.
    [2]ZHEN Chong, FENG Xinyu. Carrier-based aircraft direct lift control based on sliding mode observer and non-linear dynamic inversion technology[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0373
    [3]WEI H,CAI G B,FAN Y H,et al. Online guidance for hypersonic vehicles in glide-reentry segment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):183-192 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0965.
    [4]LI K,SHEN Z G,ZHANG X J. Study on uncertainties of graphene tag antenna by screen printing[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):857-864 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0159.
    [5]SUN X M,MA X,LIU Y,et al. Adaptive sliding mode region reaching control for uncertain nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2482-2491 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0647.
    [6]LIU W,YAN S,WANG X B,et al. Consensus control of multi-agent systems with uncertain communication networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1463-1473 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0518.
    [7]GE Jian-hao, GUO Jie, WANG Hao-ning, ZHANG Bao-chao, WAN Yang-yang, TANG Sheng-jing. Adaptive model predictive control for hypersonic morphing gliding vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0081
    [8]YANG J X,TANG S J,LI L,et al. Remaining useful life prediction based on implicit nonlinear Wiener degradation process[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):328-340 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0243.
    [9]YANG B,LIU C F,YU H,et al. A method for analyzing angle measurement error of radar on hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3666-3676 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0879.
    [10]TIAN M Y,SHEN Z J. Trajectory planning of re-entry gliding vehicle in a class of uncertain environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2514-2523 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0640.
    [11]CHAI G Q,BO X S,LIU H J,et al. Self-supervised scene depth estimation for monocular images based on uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3780-3787 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0943.
    [12]DONG X X,YUE Z J,WANG Z,et al. Uncertainty lightweight design of sandwich structure of rocket fairing cone[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):625-635 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0267.
    [13]ZHAO J Y,HU J,YAO J Y,et al. EHA fault diagnosis and fault tolerant control based on adaptive neural network robust observer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1209-1221 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0416.
    [14]FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2799-2806 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0734.
    [15]WANG L N,LIU Z B,YUAN J B,et al. Adaptive fault diagnosis and estimation for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2395-2405 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0656.
    [16]LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0035.
    [17]ZHANG Yuan, HUANG Wanwei, LU Kunfeng, BAI Wenyan, YU Jianglong. Modeling and finite-time control for hypersonic morphing flight vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1979-1993. doi: 10.13700/j.bh.1001-5965.2021.0701
    [18]PENG Weishi. Evaluation of high hitting accuracy performance of hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2130-2137. doi: 10.13700/j.bh.1001-5965.2021.0094
    [19]YANG Yuchen, ZHANG Zenghui, YAN Jianing, ZHANG Jing, YANG Lingyu. Dual-channel control of hypersonic flight vehicles based on bounded perturbation analysis of eigenvalues[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2020-2030. doi: 10.13700/j.bh.1001-5965.2021.0053
    [20]ZHANG Wei, WANG Qiang, LU Jiachen, YAN Chao. Robust optimization design under geometric uncertainty based on PCA-HicksHenne method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2473-2481. doi: 10.13700/j.bh.1001-5965.2021.0142
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 7.9 %FULLTEXT: 7.9 %META: 90.0 %META: 90.0 %PDF: 2.1 %PDF: 2.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.7 %其他: 6.7 %其他: 0.2 %其他: 0.2 %China: 0.5 %China: 0.5 %东京: 0.2 %东京: 0.2 %东营: 1.0 %东营: 1.0 %北京: 2.1 %北京: 2.1 %十堰: 0.5 %十堰: 0.5 %南京: 0.2 %南京: 0.2 %南阳: 0.2 %南阳: 0.2 %哥伦布: 0.5 %哥伦布: 0.5 %天津: 0.2 %天津: 0.2 %宜春: 0.2 %宜春: 0.2 %宣城: 0.5 %宣城: 0.5 %常州: 0.2 %常州: 0.2 %广州: 0.2 %广州: 0.2 %张家口: 1.0 %张家口: 1.0 %扬州: 1.0 %扬州: 1.0 %昆明: 0.2 %昆明: 0.2 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.2 %杭州: 0.2 %深圳: 13.1 %深圳: 13.1 %漯河: 1.0 %漯河: 1.0 %漳州: 0.2 %漳州: 0.2 %肇庆: 0.2 %肇庆: 0.2 %芒廷维尤: 13.8 %芒廷维尤: 13.8 %芝加哥: 0.5 %芝加哥: 0.5 %襄阳: 0.2 %襄阳: 0.2 %西宁: 52.6 %西宁: 52.6 %西安: 0.2 %西安: 0.2 %郑州: 1.0 %郑州: 1.0 %银川: 0.2 %银川: 0.2 %长沙: 0.7 %长沙: 0.7 %其他其他China东京东营北京十堰南京南阳哥伦布天津宜春宣城常州广州张家口扬州昆明朝阳杭州深圳漯河漳州肇庆芒廷维尤芝加哥襄阳西宁西安郑州银川长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3798) PDF downloads(981) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return