WANG Ji-e, LI Xiao-bing, JI Xiao-qiang, et al. Study on Stability of PolymerBased PTC Composites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(6): 621-623. (in Chinese)
Citation: Qing Liye, Wu Sujun, Zhao Haitao, et al. Determination of damage tolerance and remaining lifefor aeroengine crankcase[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(7): 895-900. (in Chinese)

Determination of damage tolerance and remaining lifefor aeroengine crankcase

  • Received Date: 08 Jul 2010
  • Publish Date: 30 Jul 2011
  • In order to ensure the safety of aircraft, fracture assessment for an aeroengine crankcase was carried out. Based on finite element method, a model for the local crankcase fitting seat was established and the geometry factor Y for different crack lengths was obtained. Using the procedure of BS7910, crankcase damage tolerance was calculated and verified by test, the critical allowable crack length is 84.8 mm and the remaining strength decreases with the increase of crack length. The allowable crack dimension and residual strength of weld are smaller than that of parent metal. The test results are in good agreement with the calculated results when crack is small. The remaining life of crankcase was also calculated using Paris formula.

     

  • [1] 航空工业部科学技术委员会.飞机结构损伤容限设计指南[M].北京:航空工业部科学技术情报研究所,1985 Aviation Industry Science and Technology Commission.Guide to damage tolerance design of aircraft structure[M].Beijing:.Aviation Industry Science and Technology Commission,1985 (in Chinese) [2] GJB776-89,军用飞机损伤容限要求[S] GJB776-89,Military airplane damage tolerance requirements[S] [3] 孙克淋,安伟光,王滨生,等.航天飞机薄壁结构的可靠性分析[J].哈尔滨工程大学学报,2004,25(3):327-331 Sun Kelin,An Weiguang,Wang Binsheng,et al.Reliability analysis of thin-walled structures for shuttle[J].Journal of Harbin Engineering University,2004,25(3):327-331 [4] 李亚智,张向.整体加筋壁板的破损安全特性与断裂分析[J].航空学报,2006,27(5):842-846 Li Yazhi,Zhang Xiang.An analysis of fail-safety and fracture control of integreally stiffened panels[J].Acta Aeronautica et Astronautica Sinica,2006,27(5):842-846 [5] 黄其青,刘进征,殷之平.整体翼梁结构断裂特性分析方法与研究[J].航空计算技术,2006,36(2):114-119 Huang Qiqing,Liu Jinzheng,Yu Zhiping.Fracture characteristics analysis method and study of wing-bean integrated structure[J].Aeronautical Computing Technique,2006,36(2):114-119 [6] Schodel M,Zerbst U,Donne C D.Application of the european flaw assessment procedure SINTAP to thin wall structures subjected to biaxial and mixed mode loadings[J].Engineering Fracture Mechanics,2006,73(5):626-642 [7] BS 7910:2005:Guide to methods for assessing the acceptability of flaws in metallic structures[S] [8] API 579-1/ASME FFS-1:Fitness-for-service[S] [9] R6:Assessment of the integrity of structure containing defect.Revision 4[S]
  • Relative Articles

    [1]WANG Jiatao, JIANG Weisheng, JIN Mengmeng, GUO Pan, ZHOU Qianxiang. Effect of seatback inclination on thoracoabdominal injuries of taikonauts under reentry return loads[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0892
    [2]CAI S Y,HAO F W,SHI T. Partition based on features of neighborhood points and corresponding point cloud registration of aero-engine damaged blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):784-794 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0081.
    [3]PEI H N,CHEN Y F,BAI Z H,et al. Analysis of high load injury of thoracolumbar spine in pilots during ejection process[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):102-112 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0957.
    [4]XU C,XIAO Y,DENG P C. Fatigue life prediction of CFRP flat-joggle-flat bonded joint[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):518-524 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0048.
    [5]ZHANG M,FAN C G,YU S Q. An elliptical damage detection method using full matrix capture for stiffened plate[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2033-2042 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0568.
    [6]CAI Shu-yu, HE Chong. A damage detection method for aero-engine based on FDG-YOLO lightweight model[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0024
    [7]DENG J X,CHEN L,LU S T,et al. Damage distribution of composite structures of a certain type aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):920-930 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0379.
    [8]PANG C,LIU D J,TIAN G,et al. Experimental and simulation study on fatigue multi crack fusion of 2195-T8 Al-Li alloy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):350-358 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0249.
    [9]YU Y B,HE Z Q,HE X F,et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2585-2594 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0639.
    [10]LI Peiyuan, CAI Qiaoyan, LI Zengshan, FENG Jiahe. Damage tolerance analysis and research on reusable launch vehicle connection structures[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0221
    [11]HAN J K,YUAN T,LIU Z K,et al. Expanding hexagon search method based on honeycomb structure[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2731-2740 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0718.
    [12]XU M R,ZENG B Y,XIONG X,et al. Tensile fatigue properties of carbon fiber laminates in hygrothermal environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1614-1622 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0565.
    [13]ZHANG P,ZHOU Q X,YU H Q,et al. Fast detection method of mental fatigue based on EEG signal characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):145-154 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0211.
    [14]XIN T D,CUI C Y,LIU Y,et al. Non-probabilistic reliability analysis method for propellent tank with crack defect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2330-2336 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0651.
    [15]FAN X H,GOU B Y,CHEN T,et al. Hole edge crack monitoring technology of flexible eddy current array sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):726-734 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0306.
    [16]ZHANG X M,NIE P F,GAO Z B,et al. Influence of temperature stress on fatigue damage of airfield pavement slab[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2558-2566 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0729.
    [17]ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154
    [18]WANG Lizhen, LIU Jinglong, ZHAO Yanpeng, BU Weiping, LIU Songyang, FAN Yubo. Effect of helmet on neck injury of pilots in flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1818-1826. doi: 10.13700/j.bh.1001-5965.2022.0609
    [19]XIA Fei, XUE Jianghong, HE Zanhang, JIN Fusong. Interfacial crack growth of delaminated composite laminates under hygrothermal environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2460-2472. doi: 10.13700/j.bh.1001-5965.2021.0137
    [20]PENG Chaoyong, XU Songbai, DU Chuangzhou, ZHANG Jie. Ultrasonic phased array imaging on aviation aluminum block fatigue crack[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2398-2404. doi: 10.13700/j.bh.1001-5965.2021.0161
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3113) PDF downloads(1094) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return