Volume 38 Issue 5
May  2012
Turn off MathJax
Article Contents
You Yuyang, Zhu Jihong, Yang Zhihonget al. Two-layer clustering over data stream with fault-tolerance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5): 665-669,674. (in Chinese)
Citation: You Yuyang, Zhu Jihong, Yang Zhihonget al. Two-layer clustering over data stream with fault-tolerance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5): 665-669,674. (in Chinese)

Two-layer clustering over data stream with fault-tolerance

  • Received Date: 07 Feb 2011
  • Publish Date: 30 May 2012
  • A new envolving data stream clustering algorithm with fault-tolerance characteristic was proposed named FTGDStream (fault-tolerant grid-density clustering over data stream). It introduces appropriate relaxation of conditions for discover generalised knowledge in real world data polluted by noise. First, FTGDStream uses similarity measure technology and lifting wavelet to construct synopsis HLSFTS (hierarchical lifting scheme fault-tolerant synopses) to realize online micro-cluster phase. Second, FTGDStream uses grid-density clustering technology to realize offline macro-cluster phase. High compression ratio of HLSFTS in micro-cluster reduces the computation load of grid-density clustering algorithm in macro-cluster and improves the efficiency of two-layer algorithm. Simulation in UCI data set proves that FTGDStream is able to clustering any shape in data space and suitable for dealing with high-dimensional data streams. FTGDStream is an efficient clustering algorithm with fault-tolerance.

     

  • loading
  • [1]
    Callaghan O L,Mishra N,Meyerson A.Streaming data algorithms for high-quality clustering[C]//San Jose.Proceedings of International Conference on Data Engineering.California:IEEE Computer Society,2002:685-699
    [2]
    Chen Y X,Tu L.Density-based clustering for real-time stream data[C]//San Jose.Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.California:ACM,2007:133-142[ZK)]
    [3]
    Aggarwal C C,Han Jiawei,Wang Jianyong,et al.A framework for clustering evolving data streams[C]//Proceeding of the 29th International Conference on Very Large Data Bases.Berlin:Morgan Kaufmann ,2003:81-92
    [4]
    Aggarwal C C,Han Jiawei,Wang Jianyong,et al.A framework for projected clustering of high dimensional data streams[C]//Proceeding of the 29th International Conference on Very Large Data Bases.Toronto,Canada:Morgan Kaufmann,2004:852-863
    [5]
    Chen Mingsheng,Wu Xianliang,Wei Sha,et al.Fast multipole method accelerated by lifting wavelet transform scheme[J].Applied Computational Electromagnetics Society Journal,2009,24(2):109-115
    [6]
    Shahin M,Badawi A,Kamel M.Biometric authentication using fast correlation of near infrared hand vein patterns [J].International Journal of Biometrical Sciences,2007,2 (3):141-148
    [7]
    Cao Feng,Ester M,Qian Weining,et al.Density-based clustering over an evolving data stream with noise[C]//Proceedings of the 6th SIAM International Conference on Data Mining.Bethesda,MD:SIAM,2006:326-337
    [8]
    Han J,Kamber M.Data mining:concepts and techniques[M].2nd ed.Morgan Kaufmann:Elsevier Inc,2006:467-589
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2484) PDF downloads(438) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return