Volume 38 Issue 12
Dec.  2012
Turn off MathJax
Article Contents
Li Jianhong, Jiang Tongmin, He Yuzhu, et al. SVM fault diagnosis method based on NMF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(12): 1639-1643. (in Chinese)
Citation: Li Jianhong, Jiang Tongmin, He Yuzhu, et al. SVM fault diagnosis method based on NMF[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(12): 1639-1643. (in Chinese)

SVM fault diagnosis method based on NMF

  • Received Date: 23 Sep 2011
  • Publish Date: 30 Dec 2012
  • For overcoming the difficulty of fault feature extraction and solving the low efficiency of fault feature classification in a large dimensions fault diagnosis system,an algorithm of support vector machine(SVM)based on non-negative matrix factorization(NMF)fault diagnosis was researched. It is to avoid the direct feature selection and extraction, to reduce the characteristic dimension,and improve the high-dimensional data feature mode classification speed and accuracy. In order to avoid NMF randomness,characteristics of fault samples dimensionality reduction by training samples coefficient matrix was calculated, so that the consistency of the scale of NMF decomposition times was ensured. The experiment shows that this algorithm can reduce the dimensions of fault feature. The method can enhance the running efficiency and the estimating accuracy.

     

  • loading
  • [1]
    Vapnik V N.统计学习理论的本质[M].北京:电子工业出版社,2009 Vapnik V N.The nature of statistical learning theory[M].Beijing:Electronic Manufacture Press,2009(in Chinese)
    [2]
    Yang Chanyun, Yang Jrsyu, Wang Jianjun.Margin calibration in SVM class-imbalanced learning[J].Neurocomputing,2009,73 (13) :397-411
    [3]
    Yeom Honggi, Jang Inhun, Sim Kweebo.Variance considered machines:modification of optimal hyperplanes in support vector machines //IEEE International Symposium on Industrial Electronics.Seoul:IEEE, 2009:1144-1147
    [4]
    Fung G, Mangasarian O L.Proximal support vector machine classifiers //Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2001:77-86
    [5]
    曹胜玉,刘来福.非负矩阵分解及其在基因表达数据分析中的应用[J].北京师范大学学报:自然科学版,2007,43(1):30-33 Cao Shengyu, Liu Laifu.Non-negative matrix factorization and its applications to gene expression data analysis[J].Journal of Beijing Normal University:Natural Science,2007,43(1):30-33(in Chinese)
    [6]
    陈清华,陈六君,郑涛,等.基于非负矩阵分解方法的汉字基本部件识别[J].计算机工程与应用, 2008,44(29):76-78 Chen Qinghua, Chen Liujun, Zheng Tao, et al.Base component discovery from Chinese characters by NMF methods[J].Computer Engineering and Applications 2008,44(29):76-78(in Chinese)
    [7]
    张磊,冯晓森,项学智.基于非负矩阵分解的中文文本主题分类[J].计算机工程,2009, 35(13):26-27 Zhang Lei, Feng Xiaosen, Xiang Xuezhi.Topic classification of Chinese document based on NMF[J].Computer Engineering, 2009, 35(13):26-27(in Chinese)
    [8]
    邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2004 Deng Naiyang, Tian Yingjie.A new method of data mining:SVM[M].Beijing:Science Press,2004(in Chinese)
    [9]
    孙永奎.基于支持向量机的模拟电路故障诊断方法研究 .成都:电子科技大学自动化工程学院,2009 Sun Yongkui.Study on fault diagnosis in analog circuits based on support sector machine .Chengdu:School of Automation Engineering,University of Electronic Science and Technology of China,2009(in Chinese)
    [10]
    胡国胜,钱玲, 张国红.支持向量机的多分类算法[J].系统工程与电子技术,2006,28(1):127-132 Hu Guosheng, Qian Ling, Zhang Guohong.Survey of multi-classification algorithms based on support vector machine [J].Systems Engineering and Electronics,2006,28(1):127-132(in Chinese)
    [11]
    张建明,曾建武,谢磊,等.基于粗糙集的支持向量机故障诊断[J].清华大学学报:自然科学版, 2007,47(S2):1774-1777 Zhang Jianming, Zeng Jianwu, Xie Lei, et al.Fault diagnosis based on RS and SVM[J].Journal of Tsinghua University:Sience and Technology,2007,47(S2):1774-1777(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1638) PDF downloads(519) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return