Wang Wenwen, Diao Xungang, Wang Zheng, et al. Optical, electrical and infrared emissing properties of DC magnetron sputtered ZnO:Al thin films[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(02): 236-241. (in Chinese)
Citation: Chen Liang, Liang Guozhu, Deng Xinyu, et al. CFD numerical simulation of cryogenic propellant vaporization in tank[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2): 264-268. (in Chinese)

CFD numerical simulation of cryogenic propellant vaporization in tank

  • Received Date: 06 Jan 2011
  • Publish Date: 28 Feb 2013
  • Simulation on heat and mass transfer in propellant tank was performed to investigate influence of cryogenic propellant vaporization on tank pressure and propellant temperature. The simulation was concerned with heat transfer between propellant tank and external environment, propellant free convection, thermal exchange between propellant and inner tank wall surface, and cryogenic propellant phase transition. A propellant phase transformation model was built on the basis of thermodynamic equilibrium. Physical process of 450s in propellant tank during ground parking under atmospheric pressure was simulated using computational fluid dynamic(CFD) method. Simulation results reveal that the propellant temperature distribution, flow state and phase transition will tend to stable as propellant tank wall heat transfer stabilizes. The evaporation of propellant per unit time was obtained through simulation. And the main factors affecting the propellant phase transition are heat leak from tank walls and the propellant's own convection motion.

     

  • [1]
    Zilliac G,Arif Karabeyoglu M.Modeling of propellant tank pressurization [R].AIAA-2005-3549, 2005
    [2]
    王赞社,顾兆林,冯诗愚,等.低温推进剂贮箱增压过程的传热传质数学模拟[J].低温工程,2007,160(6):28-37 Wang Zanshe,Gu Zhaolin,Feng Shiyu,et al.Simulation of heat transfer and mass transfer in cryogenic propellant tank pressurization process[J].Cryogenics,2007,160(6):28-37 (in Chinese)
    [3]
    Majumdar A,Steadman T.Numerical modeling of pressurization of a propellant tank [R].AIAA-99-0879,1999
    [4]
    代予东,赵红轩.运用数学方法模拟推进剂贮箱增压[J].火箭推进,2003,29(3): 34-40 Dai Yudong,Zhao Hongxuan.Simulation of propellant tank pressurization using mathematics method[J].Journal of Rocket Propulsion,2003,29(3):34-40(in Chinese)
    [5]
    Panzarella C H,Kassemi M.On the validity of purely thermodynamic descriptions of two-phase cryogenic fluid storage[J].J Fluid Mech,2003,484: 41-68
    [6]
    Panzarella C H,Kassemi M.Self-pressurization of large spherical cryogenic tanks in space[J].Journal of Spacecraft and Rockets,2005,42(2): 299-308
    [7]
    Cheng Xianghua,Li Yanzhong,Chen Erfeng,et al.Effect of return inlet on thermal stratication in a rocket tank[J].Journal of Thermophysics and Heat Transfer,2010,24(1): 112-122
    [8]
    徐济鋆.沸腾传热和气液两相流[M].北京:原子能出版社,2001:215-220 Xu Jijun.Boiling heat transfer and gas-liquid two-phase flow[M].Beijing: Atomic Energy Press,2001:215-220(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1953) PDF downloads(934) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return