LI Yong-yi, WANG Nan, WU Xin-yue, et al. Research on Non-Cooperative Automatic Docking Strategy of Umbilical Connector for Launch Vehicle under Fluctuating Wind Load[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0506(in Chinese)
Citation: Wang Deqing, Zhang Hui. Support-vector-based iteratively adjusted centroid classifier for text categorization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2): 269-274. (in Chinese)

Support-vector-based iteratively adjusted centroid classifier for text categorization

  • Received Date: 11 Jan 2012
  • Publish Date: 28 Feb 2013
  • To address the lackness of centroid-based classifier (CC) that is prone to generate inductive bias or model misfit, a support-vector-based iteratively-adjusted centroid classifier (IACC_SV) was proposed, which employs support vectors found by some routines, e.g., linear support vector machines (SVMs) to construct centroid vectors for CC, and then iteratively adjusts the initial centroid vectors according to the misclassified training samples. Compared with traditional classification algorithms, IACC_SV achieves better performance in terms of macro-F1 and micro-F1, and the extensive experiments on 8 real-world text corpora demonstrate the effectiveness of the proposed algorithm, especially on text corpora with highly imbalanced classes.

     

  • [1]
    Sebastiani F.Machine learning in automated text categorization[J].ACM Computing Surveys,2002,34(1):1-47
    [2]
    Wang D,Zhang H,Liu R,et al.Predicting bugs' components via mining bug reports[J].Journal of Software,2012,7(5): 1149-1154
    [3]
    Han E H,Karypis G.Centroid-based document classification: analysis & experimental results[C]//Proceedings of PKDD'00.London:Springer-Verlag,2000:424-431
    [4]
    Tam V,Santoso A,Setiono R.A comparative study of centroidbased,neighborhood-based and statistical approaches for effective document categorization[C]//Proceedings of 16th ICPR.Washington:IEEE Computer Society,2002:235-238
    [5]
    Guan H, Zhou J,Guo M.A class-feature-centroid classifier for text categorization[C]//Proceedings of WWW.New York:ACM,2009:201-210
    [6]
    Tan S.An improved centroid classifier for text categorization[J].Expert Systems with Applications,2008,35(1/2):1279-1285
    [7]
    Tan S,Wang Y,Wu G.Adapting centroid classifier for document categorization[J].Expert Systems with Applications,2011, 38(8):10264-10273
    [8]
    Lertnattee V,Theeramunkong T.Effect of term distributions on centroid-based text categorization[J].Information Sciences,2004,158:89-115
    [9]
    Shankar S,Karypis G.Weight adjustment schemes for a centroid based classifier .TR 00-035,2000
    [10]
    Foody G M.Issues in training set selection and refinement for classification by a feedforward neural network[C]//Proceedings of IGARSS.Seattle:IEEE,1998:409-411
    [11]
    Cortes C,Vapnik V.Support-vector networks[J].Machine Learning,1995,20:273-297
    [12]
    Joachims T.Text categorization with support vector machines .TR-23,University of Dortmund,1997
    [13]
    Salton G,Buckley C.Term-weighting approaches in automatic text retrieval[J].Information Processing & Management,1988,24(5):513-523
    [14]
    Jones K S.A statistical interpretation of term specificity and its application in retrieval[J].J Documentation,1972,28(1):11-21
    [15]
    Han E H.Tmdata .Minnesota:University of Minnesota,2000 .http://www.cs.umn.edu/~han/data/tmdata.tar.gz
    [16]
    Xiong H,Wu J,Chen J.K-means clustering versus validation measures:a data-distribution perspective[J].IEEE Transactions on Systems,Man,and Cybernetics Part B,2009,39(2):318-331
    [17]
    Lewis D.Reuters-21578 .Dublin:Trinty College,2007 .
    [18]
    Lang Ken.20Newsgroup .Massachusetts:Massachusetts Institute of Technology,2007 .
    [19]
    Lewis D D.Evaluating and optimizing autonomous text classification systems[C]//Proceedings of 18th SIGIR.New York:ACM,1995:246-254
    [20]
    Yu H,Hsieh C J,Chang K W,et al.Large linear classification when data cannot fit in memory[C]//Proceedings of KDD-10.New York:ACM,2010:833-842
    [21]
    Yang Y,Liu X.A re-examination of text categorization methods[C]//Proceedings of SIGIR '99.New York:ACM,1999: 42- 49
    [22]
    Chang C C,Lin C J.Libsvm:a library for support vector machines .Taiwan:Department of Computer Science and Information Engineering,National Taiwan University,2001 .http://www.csie.ntu.edu.tw/~cjlin/libsvm
  • Relative Articles

    [1]BAI C P,ZHANG S Y,ZHANG X,et al. Spaceborne particle identification platform and application based on convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1313-1323 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0171.
    [2]ZHU J Z,WANG C,LI X K,et al. A deep reinforcement learning based on discrete state transition algorithm for solving fuzzy flexible job shop scheduling problem[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1385-1394 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0211.
    [3]MA S G,LI N B,HOU Z Q,et al. Object detection algorithm based on DSGIoU loss and dual branch coordinate attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1085-1095 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0192.
    [4]LU S Q,GUAN F X,LAI H T,et al. Two-stage underwater image enhancement method based on convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):321-332 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1003.
    [5]YANG B,WEI X,YU H,et al. Martian terrain feature extraction method based on unsupervised contrastive learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1842-1849 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0525.
    [6]WANG J,LI P T,ZHAO R F,et al. A person re-identification method for fusing convolutional attention and Transformer architecture[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):466-476 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0456.
    [7]HOU Z Q,MA J Y,HAN R X,et al. A fast long-term visual tracking algorithm based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2391-2403 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0645.
    [8]LI H G,WANG Y F,YANG L C. Meta-learning-based few-shot object detection for remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2503-2513 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0637.
    [9]ZHANG J H,ZHAO W,WANG Z C,et al. UAV pedestrian tracking algorithm based on detection and re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2538-2546 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0675.
    [10]LI Y H,YU H K,MA D F,et al. Improved transfer learning based dual-branch convolutional neural network image dehazing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):30-38 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0253.
    [11]JIANG Y,CHEN M Y,YUAN Q,et al. Departure flight delay prediction based on spatio-temporal graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1044-1052 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0415.
    [12]ZHANG Y Z,LI W B,ZHENG T T. Inverted residual target detection algorithm based on LGC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1287-1293 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0452.
    [13]CHEN C,ZHAO W. Remote sensing target detection based on dynanic feature selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):702-709 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0300.
    [14]DAI P Z,LIU X,ZHANG X,et al. An iterative pedestrian detection method sensitive to historical information features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2493-2500 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0665.
    [15]ZHOU H,HOU Q Y,BIAN C J,et al. An infrared small target detection network under various complex backgrounds realized on FPGA[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):295-310 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0221.
    [16]SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130.
    [17]SU Kaiqi, YAN Weiqing, XU Jindong. 3D object detection based on multi-path feature pyramid network for stereo images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1487-1494. doi: 10.13700/j.bh.1001-5965.2021.0525
    [18]LI Zheyang, ZHANG Ruyi, TAN Wenming, REN Ye, LEI Ming, WU Hao. A graph convolution network based latency prediction algorithm for convolution neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2450-2459. doi: 10.13700/j.bh.1001-5965.2021.0149
    [19]FAN Tao, SUN Tao, LIU Hu. Hot spot detection algorithm of photovoltaic module based on attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1304-1313. doi: 10.13700/j.bh.1001-5965.2021.0457
    [20]ZENG Sheng, ZHU Fengchao, YANG Jian. A new RF fingerprint identification method based on preamble of signal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2566-2575. doi: 10.13700/j.bh.1001-5965.2021.0164
  • Cited by

    Periodical cited type(8)

    1. 吴鹏,穆荣军,邓雁鹏,崔乃刚. 月球探测器鲁棒环形山检测及光学导航方法. 哈尔滨工程大学学报. 2024(02): 238-246 .
    2. 刘晓慧,刘世瑛,刘少然,王镓,钱雪茹. 基于阴影特征的月面凹障碍自动识别检测方法. 深空探测学报(中英文). 2023(06): 659-666 .
    3. 熊月容,康志伟. 基于快照集成卷积神经网络的陨石坑图像分类识别. 中国科技论文在线精品论文. 2022(01): 104-111 .
    4. 肖扬,李帅,王光泽,邵巍,姚文龙. 小天体导航陆标深度学习预测框匹配算法. 深空探测学报(中英文). 2022(04): 400-406 .
    5. 钱洲元,贺亮,张瀚墨,胡阳修,曹涛. 基于灰度特征与几何约束的月面陨石坑自动提取方法. 载人航天. 2021(02): 158-168 .
    6. 王光泽,邵巍,郗洪良,姚文龙,黄翔宇. 小天体表面纹理曲线精准匹配算法. 深空探测学报(中英文). 2021(03): 306-314 .
    7. 花玮,顾梅花,李立瑶,崔琳. 改进SOLOv2的服装图像分割算法. 纺织高校基础科学学报. 2021(04): 74-81 .
    8. 胡涛,贺亮,曹涛,韩宇,张翰墨. 行星陨石坑检测算法研究综述. 载人航天. 2020(05): 656-663 .

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1538) PDF downloads(604) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return