LI Yong-yi, WANG Nan, WU Xin-yue, et al. Research on Non-Cooperative Automatic Docking Strategy of Umbilical Connector for Launch Vehicle under Fluctuating Wind Load[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0506(in Chinese)
Citation: Sun Jie, Xu Di, Diao Peng, et al. Electrochemical preparation of Ag nanostructures and their surface enhanced Raman scattering effects[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(2): 280-284. (in Chinese)

Electrochemical preparation of Ag nanostructures and their surface enhanced Raman scattering effects

  • Received Date: 26 Nov 2011
  • Publish Date: 28 Feb 2013
  • Ag nanostructures were successfully prepared on indium tin oxide(ITO) surfaces through electrochemical deposition. These nanostructures possessed uniform morphology. The concentration of AgNO3, the nucleation potential, the growth potential and the addition of sodium citrate greatly affected the morphology and density of the as-prepared Ag nanostructures. Only when these parameters were reasonably set could Ag nanostructures with well-defined morphology and considerable density be obtained. Investigation on surface enhanced Raman scattering(SERS) activities of the as-prepared Ag nanostructures was also carried out under 633 nm excitation, using p-aminothiophenol (p-ATP) as the probe molecule. The results show that they can serve as potential SERS substrates.

     

  • [1]
    吴跃辉,徐丽金.银杀菌材料及其杀菌作用[J].江西化工,2001(3):8-10 Wu Yuehui,Xu Lijin.Ag-carrying antibacterial materials and its property[J].Jiangxi Chemical Industry,2001(3): 8-10(in Chinese)
    [2]
    刘吉平,郝向阳.纳米科学与技术[M].北京:科学出版社,2002 Liu Jiping,Hao Xiangyang.Nanoscale science and technology[M].Beijing: Science Press,2002(in Chinese)
    [3]
    An J,Tang B,Ning X H,et al.Photoinduced shape evolution: from triangular to hexagonal silver nanoplates[J].Journal of Physical Chemistry C,2007,111(49):18055-18059
    [4]
    Wiley B.Polyol synthesis of silver nanostructures:control of product morphology with Fe(II) or Fe(III) species[J].Langmuir,2005,21(18):8077
    [5]
    Guo S,Dong S,Wang E.Rectangular silver nanorods:controlled preparation,liquid-liquid interface assembly,and application in surface-enhanced raman scattering[J].Crystal Growth & Design,2008,9(1):372-377
    [6]
    Liang H Y,Wang W Z,Huang Y Z,et al.Controlled synthesis of uniform silver nanospheres[J].Journal of Physical Chemistry C,2010,114(16):7427-7431
    [7]
    Zhang Q,Li W Y,Moran C,et al.Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30~200 nm and comparison of their optical properties[J].Journal of the American Chemical Society,2010,132(32):11372-11378
    [8]
    Dong X Y,Ji X H,Jing J,et al.Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate[J].Journal of Physical Chemistry C,2010,114(5):2070-2074
    [9]
    Liu G,Cai W,Liang C.Trapeziform Ag nanosheet arrays induced by electrochemical deposition on Au-coated substrate[J].Crystal Growth & Design,2008,8(8):2748-2752
    [10]
    Qin X,Wang H,Wang X,et al.Synthesis of dendritic silver nanostructures and their application in hydrogen peroxide electroreduction[J].Electrochimica Acta,2011,56(9):3170-3174
    [11]
    Tang S,Meng X,Lu H,et al.PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes[J].Materials Chemistry and Physics,2009,116(2/3):464-468
    [12]
    Zhang D,Diao P,Zhang Q.Potential-induced shape evolution of gold nanoparticles prepared on ITO substrate[J].Journal of Physical Chemistry C,2009,113(36):15796-15800
    [13]
    Diao P,Zhang D,Guo M,et al.Comments on electric-field-assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates[J].Advanced Materials,2009,21(13):1317-1319
    [14]
    晏晓晖,刁鹏,项民. 形貌可控的钯纳米粒子的电化学制备及电催化性质[J].高等学校化学学报,2011,32(11): 2650-2656 Yan Xiaohui,Diao Peng,Xiang Min.Electrochemical preparation of shape-controlled Pd nanoparticles and their electrocatalytic properties[J].Chemical Journal of Chinese Universities,2011,32(11):2650-2656(in Chinese)
    [15]
    刘云彦,刁鹏,项民.电沉积法制备铂纳米粒子过程中卤素阴离子对粒子形貌及电催化性质的影响[J].化学学报,2011,69(11):1301-1307 Liu Yunyan,Diao Peng,Xiang Min.Effect of halide ions on the morphology and the electrocatalytic activity of platinum nanoparticles prepared by electrodeposition[J].Acta Chimica Sinica,2011,69(11):1301-1307(in Chinese)
    [16]
    Tang B,An J,Zheng X,et al.Silver nanodisks with tunable size by heat aging[J].Journal of Physical Chemistry C,2008, 112(47): 18361-18367
    [17]
    An J,Tang B,Ning X,et al.Photoinduced shape evolution:from triangular to hexagonal silver nanoplates[J].Journal of Physical Chemistry C,2007,111(49):18055-18059
    [18]
    Sun Y A,Xia Y N.Triangular nanoplates of silver:synthesis,characterization,and use as sacrificial templates for generating triangular nanorings of gold[J].Advanced Materials,2003, 15(9): 695-699
    [19]
    Wu X,Redmond P L,Liu H,et al.Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms[J].Journal of the American Chemical Society,2008,130(29):9500-9506
    [20]
    Osawa M,Matsuda N,Yoshii K,et al.Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver:Herzberg-Teller contribution[J].Journal of Physical Chemistry,1994,98(48):12702-12707
    [21]
    Huang Y F,Zhu H P,Liu G K,et al.When the signal is not from the original molecule to be detected:chemical transformation of para-aminothiophenol on Ag during the SERS measurement[J].Journal of the American Chemical Society,2010, 132(27): 9244-9246
  • Relative Articles

    [1]BAI C P,ZHANG S Y,ZHANG X,et al. Spaceborne particle identification platform and application based on convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1313-1323 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0171.
    [2]ZHU J Z,WANG C,LI X K,et al. A deep reinforcement learning based on discrete state transition algorithm for solving fuzzy flexible job shop scheduling problem[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1385-1394 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0211.
    [3]MA S G,LI N B,HOU Z Q,et al. Object detection algorithm based on DSGIoU loss and dual branch coordinate attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1085-1095 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0192.
    [4]LU S Q,GUAN F X,LAI H T,et al. Two-stage underwater image enhancement method based on convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):321-332 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1003.
    [5]YANG B,WEI X,YU H,et al. Martian terrain feature extraction method based on unsupervised contrastive learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1842-1849 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0525.
    [6]WANG J,LI P T,ZHAO R F,et al. A person re-identification method for fusing convolutional attention and Transformer architecture[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):466-476 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0456.
    [7]HOU Z Q,MA J Y,HAN R X,et al. A fast long-term visual tracking algorithm based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2391-2403 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0645.
    [8]LI H G,WANG Y F,YANG L C. Meta-learning-based few-shot object detection for remote sensing images[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2503-2513 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0637.
    [9]ZHANG J H,ZHAO W,WANG Z C,et al. UAV pedestrian tracking algorithm based on detection and re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2538-2546 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0675.
    [10]LI Y H,YU H K,MA D F,et al. Improved transfer learning based dual-branch convolutional neural network image dehazing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):30-38 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0253.
    [11]JIANG Y,CHEN M Y,YUAN Q,et al. Departure flight delay prediction based on spatio-temporal graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1044-1052 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0415.
    [12]ZHANG Y Z,LI W B,ZHENG T T. Inverted residual target detection algorithm based on LGC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1287-1293 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0452.
    [13]CHEN C,ZHAO W. Remote sensing target detection based on dynanic feature selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):702-709 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0300.
    [14]DAI P Z,LIU X,ZHANG X,et al. An iterative pedestrian detection method sensitive to historical information features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2493-2500 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0665.
    [15]ZHOU H,HOU Q Y,BIAN C J,et al. An infrared small target detection network under various complex backgrounds realized on FPGA[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):295-310 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0221.
    [16]SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130.
    [17]SU Kaiqi, YAN Weiqing, XU Jindong. 3D object detection based on multi-path feature pyramid network for stereo images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1487-1494. doi: 10.13700/j.bh.1001-5965.2021.0525
    [18]LI Zheyang, ZHANG Ruyi, TAN Wenming, REN Ye, LEI Ming, WU Hao. A graph convolution network based latency prediction algorithm for convolution neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2450-2459. doi: 10.13700/j.bh.1001-5965.2021.0149
    [19]FAN Tao, SUN Tao, LIU Hu. Hot spot detection algorithm of photovoltaic module based on attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1304-1313. doi: 10.13700/j.bh.1001-5965.2021.0457
    [20]ZENG Sheng, ZHU Fengchao, YANG Jian. A new RF fingerprint identification method based on preamble of signal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2566-2575. doi: 10.13700/j.bh.1001-5965.2021.0164
  • Cited by

    Periodical cited type(8)

    1. 吴鹏,穆荣军,邓雁鹏,崔乃刚. 月球探测器鲁棒环形山检测及光学导航方法. 哈尔滨工程大学学报. 2024(02): 238-246 .
    2. 刘晓慧,刘世瑛,刘少然,王镓,钱雪茹. 基于阴影特征的月面凹障碍自动识别检测方法. 深空探测学报(中英文). 2023(06): 659-666 .
    3. 熊月容,康志伟. 基于快照集成卷积神经网络的陨石坑图像分类识别. 中国科技论文在线精品论文. 2022(01): 104-111 .
    4. 肖扬,李帅,王光泽,邵巍,姚文龙. 小天体导航陆标深度学习预测框匹配算法. 深空探测学报(中英文). 2022(04): 400-406 .
    5. 钱洲元,贺亮,张瀚墨,胡阳修,曹涛. 基于灰度特征与几何约束的月面陨石坑自动提取方法. 载人航天. 2021(02): 158-168 .
    6. 王光泽,邵巍,郗洪良,姚文龙,黄翔宇. 小天体表面纹理曲线精准匹配算法. 深空探测学报(中英文). 2021(03): 306-314 .
    7. 花玮,顾梅花,李立瑶,崔琳. 改进SOLOv2的服装图像分割算法. 纺织高校基础科学学报. 2021(04): 74-81 .
    8. 胡涛,贺亮,曹涛,韩宇,张翰墨. 行星陨石坑检测算法研究综述. 载人航天. 2020(05): 656-663 .

    Other cited types(11)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1658) PDF downloads(699) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return