Citation: | Huang Chengtao, Wang Lixin. Longitudinal flying qualities evaluation of UAV system in remote mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(4): 427-431. (in Chinese) |
[1] |
陶于金,王建培.无人机飞行品质标准研究[J].飞行力学,2010,28(1):13-15 Tao Yujin,Wang Jianpei.Research on flying qualities criteria of the unmanned aerial vehicle[J].Flight Dynamics,2010,28(1):13-15(in Chinese)
|
[2] |
Thurling A J,Greene K A.An improved predictive algorithm for time delay compensation in UAVS .AIAA 2001-4424,2001
|
[3] |
丁团结,方威,王锋.无人机遥控驾驶关键技术研究与飞行品质分析[J].飞行力学,2011,29(2):17-19 Ding Tuanjie,Fang Wei,Wang Feng.Development of UAV remote-piloted key technology and flight qualities[J].Flight Dynamics,2011,29(2):17-19(in Chinese)
|
[4] |
Holmberg J A,King D J,Leonard J R.Flying qualities specifications and design standards for unmanned air vehicles .AIAA 2008-6555,2008
|
[5] |
Cárdenas E M,Boschetti P J,Amerio A.Stability and flying qualities of an unmanned airplane using the vortex-lattice method[J].Journal of Aircraft,2009,46(4):1461-1464
|
[6] |
Howard R M,Bray R M,Lyons D F.Flying-qualities analysis of an unmanned air vehicle[J].Journal of Aircraft,1996,33(2):331-336
|
[7] |
Cottingy M C.An initial study to categorize unmanned aerial vehicles for flying qualities evaluation .AIAA 2009-307,2009
|
[8] |
MIL-STD-1797 A flying qualities of piloted aircraft[S]
|
[9] |
高金源,李陆豫,冯亚昌,等.飞机飞行品质[M].国防工业出版社,2003 Gao Jinyuan,Li Luyu,Feng Yachang,et al.Aircraft flying qualities[M].Beijing:National Defense Industry Press,2003 (in Chinese)
|
[10] |
宁国栋,方振平.Neal-Smith时域PIO预测准则及应用[J].北京航空航天大学学报,2005,31(4):407-451 Ning Guodong,Fang Zhenping.Time domain Neal-Smith criterion and PIO prediction[J].Journal of Beijing University of Aeronautics and Astronautics,2005,31(4):407-451 (in Chinese)
|
[1] | HUANG Jie-yu, ZHANG Hao-wei, XIE Jun-wei, LI Zheng-jie, QI Cheng, DING Zi-hang. A resource optimization allocation algorithm for radar networked system for stealth target tracking[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0782 |
[2] | ZHAO Hong-jia, ZHANG Duo-na, LU Yuan-yao, DING Wen-rui. Intelligent Recognition of Electromagnetic Signal Modulation with Embedded Domain Knowledge[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0746 |
[3] | ZHAO H Z,WEI G H,PAN X D,et al. Dual-frequency continuous wave pseudo-signal interference effect in swept-frequency radar[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2843-2851 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0739. |
[4] | NIU G C,TIAN Y B,XIONG Y. Obstacle detection and tracking method based on millimeter wave radar and LiDAR[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1481-1490 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0541. |
[5] | LANG B,WANG H,GONG J. A small sample data-driven radar compound jamming lightweight perception network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):1005-1014 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0343. |
[6] | YANG J,HAO X H,CHEN Q L. Automatic recognition method of multi-radar signals based on multi-domain features[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):931-939 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0294. |
[7] | DAI Rui, LI Jie, HE Li-huo, GAO Xin-bo. Light-weight BiLSTM-based data association between echoes and tracks for multi-radar multi-target tracking[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0013 |
[8] | YOU Z Y,HU G P,ZHOU H,et al. Joint DOA and DOD estimation of bistatic MIMO radar coherent targets based on smoothing matrix sets optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):268-275 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0173. |
[9] | GE Wenqing, LI Detong, SONG Yadong, TAN Cao, LI Bo. Displacement sensorlesscontrol of electromagnetic linear actuator based on improved sliding mode observer[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0291 |
[10] | CHENG B P,FANG Y W,PENG W S,et al. Comprehensive performance evaluation of swarm intelligence algorithms based on improved radar graph method[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2780-2789 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0726. |
[11] | TAN Chuan-rui, LI Tang, CHEN Wen-qian, WANG Feng, YANG Dong-kai, WU Shi-yu. Evaluation of TDOA Based Air Target Localization Algorithm Using GNSS-Based Passive Radar[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0685 |
[12] | NIU G C,WANG Y Y,TIAN Y B. LiDAR obstacle detection based on improved density clustering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2608-2616 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0733. |
[13] | MIAO D,YANG D K,XU Z C,et al. Low-altitude, slow speed and small target detection probability of passive radar based on GNSS signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):657-664 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0271. |
[14] | QUAN D Y,TANG Z Y,CHEN Y,et al. Radar emitter signal recognition based on MSST and HOG feature extraction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):538-547 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0338. |
[15] | ZHOU Wei, LEI Peng, WANG Jun, WANG Jian. Analysis and suppression of radial velocity estimation error for moving targets in wideband LFMCW radar[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0689 |
[16] | CAO X W,YAO D,SUN F R,et al. Airspace sector planning method based on radar data mining[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3237-3244 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0573. |
[17] | YANG Yong, QIU Genying, HUANG Shuying, WAN Weiguo, HU Wei. Single image dehazing method based on improved atmospheric scattering model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1364-1375. doi: 10.13700/j.bh.1001-5965.2021.0532 |
[18] | XU Lijun, LIU Fulu, DING Yiqing, LI Zhengyong, XIE Yuedong. Residual thickness detection of pipeline based on electromagnetic ultrasonic shear wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1767-1773. doi: 10.13700/j.bh.1001-5965.2022.0301 |
[19] | SUN Lihua, YAN Xiaopeng, LIU Qiang, HAO Xinhong, ZHANG Hongyun. PM based super-resolution method of azimuth detection for electromagnetic vortex wave fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1263-1268. doi: 10.13700/j.bh.1001-5965.2021.0020 |
[20] | SU Donglin, CUI Shuo, BAI Jiangfei, LI Yaoyao. Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705 |