Li Zhen, Liu Bin, Miao Hong, et al. Modeling and verification of software safety requirement based on ontology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, (11): 1445-1449. (in Chinese)
Citation: Tu Yi, Xiao Xiang, Li Nanet al. Computer analysis of large-scale aircraft landing gear retraction and extension control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 595-599. (in Chinese)

Computer analysis of large-scale aircraft landing gear retraction and extension control system

  • Received Date: 11 May 2012
  • Rev Recd Date: 26 Nov 2012
  • Publish Date: 31 May 2013
  • A variety of constraints and influence factors need to be considered in landing gear retraction and extension (R/E) control system design. System simulation platform is an important auxiliary method for the system design. The hydraulic accessories simulation models of large-scale aircraft landing gear control system were established based on the fluid system simulation software Flowmaster, and the system simulation model was constructed using the established component models. Analysis of the landing gear retraction process for normal flight state was conducted based on the present system simulation model, and impacts of the actuator size on system entry pressure requirement, hydraulic fluid flowrate and the gear retraction time were also provided. The simulation method can be used for the preliminary design of the landing gear R/E control system and the verification of system design for different flight conditions.

     

  • [1]
    唐毅,魏鑫,曹克强.基于AMESim的某型飞机液压系统仿真研究[J].机床与液压,2007,35(6):198-200
    Tang Yi,Wei Xin,Cao Keqiang.The simulation of aero hydraulic system based on AMESim[J].Machine Tool & Hydraulics,2007,35(6):198-200(in Chinese)
    [2]
    王红玲,逯九利,田广来.基于AMESim的飞机防滑刹车系统数字仿真研究[J].机床与液压,2011,39(7):117-120
    Wang Hongling,Lu Jiuli,Tian Guanglai.Simulation research of aircraft braking system based on AMESim[J].Machine Tool & Hydraulics,2011,39(7):117-120(in Chinese)
    [3]
    Kong W,Sim C,Kim J.Modeling of a hydraulic power steering system and Its application to steering damper development[R].SAE 2005-01-1263,2005
    [4]
    张强,于辉,童明波.某型飞机起落架收放过程仿真[J].流体传动与控制,2009(2):29-31
    Zhang Qiang,Yu Hui,Tong Mingbo.Simulation of extending and retracting process for aircraft landing gear[J].Fluid Power Transmission and Control,2009(2):29-31(in Chinese)
    [5]
    Tu Y,Lin G P.Dynamic simulation of aircraft environmental control system based on Flowmaster[J].Journal of Aircraft,2011,48(6):2031-2041
    [6]
    Rowland P,Longvill M,Austin k,et al.Developing of the modeling environment for the simulation of an aircraft hydraulic system[R].AIAA 2000-5600,2000
    [7]
    陈博,杨国平,高军浩,等.基于Flowmaster的液压冲击器动态特性仿真研究[J].机床与液压,2011,39(11):95-97
    Chen Bo,Yang Guoping,Gao Junhao,et al.Dynamic characteristics simulation research of hydraulic impactor based on Flowmaster[J].Machine Tool & Hydraulics,2011,39(11):95-97(in Chinese)
    [8]
    屠毅,林贵平,李国栋.基于Flowmaster的运输机供氧系统仿真[J].北京航空航天大学学报,2009,35(11):1306-1310
    Tu Yi,Lin Guiping,Li Guodong.Computer analysis of transport aircraft oxygen system based on Flowmaster[J].Journal of Beijing University of Aeronautics and Astronautics,2009,35(11):1306-1310(in Chinese)
    [9]
    李彦江,刘永寿,姜志峰,等.飞机燃油系统功能仿真分析[J].航空计算技术,2009,39(4):113-116
    Li Yanjiang,Liu Yongshou,Jiang Zhifeng,et al.Analysis of functional simulation of aircraft fuel system[J].Aeronautical Computing Technique,2009,39(4):113-116(in Chinese)
  • Relative Articles

    [1]XU Bole, ZHANG Zhipeng, LI Liang, XIA Chengyi, CHEN Zengqiang. Security analysis of bounded label Petri net based on strong current state opacity[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0592
    [2]ZHANG Fan, DING Mingsong, CHEN Jianqiang, LIU Wan, JIANG Tao, LI Peng, JIANG Jun. Interactive design and implementation of HPCC-oriented industrial CFD software[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0810
    [3]YANG Z J,ZHANG C F,ZHAO R J,et al. Thermal deformation analysis and experimental verification of spatial deployable antenna hinge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):243-249 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0219.
    [4]TANG Y,DAI Q,YANG M Y,et al. Software defect prediction algorithm for intra-membrane sparrow optimizing ELM[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):643-654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0438.
    [5]YANG S C,CUI H G,ZHOU S D,et al. Real-time performance/security guarantee technology of vehicle control operating system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2051-2065 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0594.
    [6]JIA Baohui, ZHANG Bo, GAO Yuan. Safety analysis for civil aircraft system based on improved FRAM-STPA[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0670
    [7]GENG Z T,ZHAO J Q. Design and development of virtual simulation experiment software of composite piezoelectric materials[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3377-3381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0826.
    [8]ZHANG Fan, LIU Wan, GUO Yong-yan, CENG Zhi-chun, HE Qian-wei, ZHAO Zhong. The application and practice of black box testing technology in Fluid Simulation Software[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0621
    [9]LIU Z Y,ZHANG G,LIU H R,et al. Software robot-based application behavior simulation for cyber security range in industrial control field[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2237-2244 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0597.
    [10]HU X,CHEN J M,LI H F. Software security vulnerability patterns based on ontology[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3084-3099 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0783.
    [11]ZHANG Y X,WANG X J,WANG S P,et al. Mechanism of butterfly forward flight and prototype verification based on characteristic motion observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1651-1660 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0497.
    [12]HAN Xiao, ZHOU Ying, HUANG Hai, SHAO Jing-yi. Design and Verification of High-precision Dynamic Temperature Control System[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0297
    [13]ZHANG P,CHI H H,LI J B,et al. Lattice based strong designated verifier signature scheme[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1294-1300 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0445.
    [14]YANG B,HE Y Z,XU F,et al. Using improved genetic algorithm for software fault localization aided test case generation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2279-2288 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0524.
    [15]YANG B,LIU Z,WEI X J,et al. A safety analysis approach for embedded system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1930-1939 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0185.
    [16]MA L Q,SUN X Z. Design of flight control system for BWB civil aircraft considering safety[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):804-814 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0341.
    [17]XU F J,ZHOU X,ZHAO J S,et al. Conception and development of software-defined satellite technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1543-1552 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0562.
    [18]ZHANG Pei-hong, ZHOU Gui-yu, SHEN Ying-ying, TANG Jing, ZHAO Wei, JIA Hong-yin. Research on simulation of parallel separation characteristics using NNW-FlowStar software[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0275
    [19]GAO Y T,ZHANG J D. Intelligent orbit determination based on remote sensing image of ontology knowledge base[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1053-1062 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0417.
    [20]GUO Tai, QIAN Xin, GONG Qi, REN Wenming, YANG Shuanbao, XU Qinggang. Methodology for model based verification requirements capturing and application in civil aircraft development[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1933-1942. doi: 10.13700/j.bh.1001-5965.2021.0047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2138) PDF downloads(1029) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return