Lü Shanwei, Wu Dongmei, Wang Wei, et al. Design of focal plane array of radio telescope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(03): 341-344. (in Chinese)
Citation: Yu Juntao, Jiao Zongxia, Wu Shuaiet al. Modeling and control simulation of PZT-DDV using hydraulic amplification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1354-1359. (in Chinese)

Modeling and control simulation of PZT-DDV using hydraulic amplification

  • Received Date: 12 Dec 2012
  • Publish Date: 30 Oct 2013
  • A servo valve direct driven by piezoelectric actuator (PZT-DDV) using hydraulic amplification was researched. It takes advantage of the higher bandwidth and larger flow rate. The actuary model was built. The characteristic of PZT-DDV was investigated based on the co-simulation environment of AMESim and Simulink. By using AMESim the PZT-DDV nonlinear model and hydraulic environment have been set up. By using Simulink the digital controller model had been set up. LuGre friction model was used to estimate the friction force, feed forward and adaptive back stepping control was investigated to improve the hysteresis, friction and load sensitive characteristic of PZT-DDV. The simulation results demonstrate that the steady precision can be improved by the adaptive back stepping control and the dynamic performances can be improved by the feed forward control.

     

  • [1] Murrenboff H.Development trends in fluid power [J].Konstruktion,1997(3):20-29 [2] 沈传亮,程光明,杨志刚.新型直动式压电伺服阀[J].机械工程学报,2004,40(9):125-128 Shen Chuanliang,Cheng Guangming,Yang Zhigang.New type piezoelectric direct drive servo valve [J].Chinese Journal of Mechanical Engineering,2004,40(9):125-128 (in Chinese) [3] 曹锋.压电液伺服阀结构设计及控制方法研究[D].北京:北京航空航天大学自动化科学与电气工程学院,2008 Cao Feng.Structural design and control methods of the piezoelectric hydraulic servo-valve[D].Beijing:School of Automation Science and Electrical Engineering,Beijing University of Aeronautics and Astronautics,2008 (in Chinese) [4] 沈传亮.压电型直动式电液伺服阀的基本理论与实验研究[D].长春:吉林大学机械科学与工程学院,2006 Shen Chuanliang.Basic theory and experimental study of piezoelectric directly driven electro-hydraulic servo valves[D].Changchun:School of Mechanical Science and Engineering,Jilin University,2006 (in Chinese) [5] 俞军涛,焦宗夏,吴帅.基于液压微位移放大结构的新型压电陶瓷直接驱动阀设计及仿真[J].机械工程学报,2013, 49(2) :151-158 Yu Juntao,Jiao Zongxia,Wu Shuai.Design and simulation study on a new servo valve direct driven by piezoelectric actuator using hydraulic amplification [J].Chinese Journal of Mechanical Engineering,2013,49(2):151-158 (in Chinese) [6] 付永领,祁晓野.AMEsim建模与仿真[M].北京:北京航空航天大学出版社,2006 Fu Yongling,Qi Xiaoye.AMEsim modeling and simulation [M].Beijing:Beihang University Press 2006 (in Chinese) [7] 吴帅,康荣杰,俞军涛,等.VCM-DDV建模与控制仿真[J].北京航空航天大学学报,2010,36(3):342-345 Wu Shuai,Kang Rongjie,Yu Juntao,et al.Modeling of VCM-DDV and control simulation[J].Journal of Beijing University of Aeronautics and Astronautics,2010,36(3):342-345 (in Chinese) [8] Al-Bender F,Lampaert V,Swevers J.The generalized maxwell-slip model:a novel model for friction simulation and compensation[J].IEEE Transactions on Automatic Control,2005, 50(11) :1883-1887 [9] Carlos C D W,Olsson H,Astrom K J,et al.A new model for control of systems with friction[J].IEEE Transactions on Automatic Control,1995,40(3):419-425 [10] Padthe A K,Oh J H,Bernstein D S.On the lugre model and friction-induced hysteresis[C]//Proceedings of the 2006 American Control Conference.Minneapolis,Minnesota,USA,IEEE,2006:3247-3252 [11] Tan Yaolong,Chang Jie,Tan Hualin.Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties[J].IEEE Transactions on Industrial Electronics,2003,50(5):944-952 [12] Zhang Tao,Ge Shuzhi,Hang C C.Adaptive neural network control for strict-feedback nonlinear systems using backstepping design[J].Automatica,2000,36(12):1835-1846
  • Relative Articles

    [1]WANG D W,LIU W,FANG J,et al. Low illumination image enhancement algorithm for UAV aerial photography with color consistency[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1096-1106 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0172.
    [2]CUI Zhen, ZHAO Zhigang, SU Cheng, MENG Jiadong, ZHAO Xiangtang, CHAI Wei. Dynamics and Dynamic Stability Analysis of Rope Traction Upper Limb Rehabilitation Robot[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0827
    [3]ZHU X Q,WANG T,RUAN X G,et al. Gait learning method of quadruped robot based on policy distillation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):428-439 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0069.
    [4]YAN Linli, ZHANG Jiankang, ZHOU Qingyong, LEI Yaohu, FAN Shaojuan. Analysis of the stability of the core payload on the satellite XPNAV-01[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0273
    [5]ZHANG Wen-ke, HAN Peng, FENG Yu, GAO Dong. Visual-inertial integrated navigation method based on semantic segmentation and geometric constraints in dynamic environment[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0016
    [6]ZHANG Zhihao, DU Lixia, HAO Ziwei, HOU Yue. Multi-core contextual feature-guided algorithm for trusted detection of UAV aerial images[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0548
    [7]WANG Dianwei, ZHAO Wulin, FANG Jie, LI Yuanqing, XU Zhijie. Low-light image enhancement algorithm for UAV aerial photography base on low-light instances[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0531
    [9]LIU Z Y,ZHANG G,LIU H R,et al. Software robot-based application behavior simulation for cyber security range in industrial control field[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2237-2244 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0597.
    [10]SHI T,ZHUANG X B,LIN Z J,et al. Satellite selection based on parallel genetic algorithm for high orbit autonomous satellite navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3528-3536 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0118.
    [11]LIU F,WANG Z,DAI Y Y,et al. A robust adaptive filtering algorithm based on predicted residuals in integrated navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1301-1310 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0460.
    [12]SU B Z,WANG L,ZHANG H W,et al. Relative navigation method based on modified likelihood filtering for unmanned aerial vehicle formation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):569-579 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0313.
    [13]ZHANG Zhi, YI Hua-hui, ZHENG Jin. Few-Shot Object Detection of Aerial Image Based on Language Guidance Vision[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0491
    [14]WANG C Y,YANG L M,LI Y H. A mapping leader formation control strategy for multiple mobile robots based on two-stage sliding mode control[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3108-3114 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0792.
    [15]DUAN A N,ZHOU R,DI B. Multi-robot cooperative coverage of key regions considering prior information[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1479-1486 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0435.
    [16]WANG Z D,GUANG C H,WANG L Q,et al. Design and implementation of robot-assisted subretinal injection system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2406-2414 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0667.
    [17]XIA Xin-hui, JIA Ying-hong, ZHANG Jun. Spherical-caging-based control of a dual-arm space robot for capturing an object[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0258
    [18]SHI Pengliang, WANG Xiaoyu, XUE Rui. Purification method of satellite navigation signal based on array antenna beamforming[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1906-1914. doi: 10.13700/j.bh.1001-5965.2021.0043
    [19]CHI Shengkai, XIE Yongfang, CHEN Xiaofang, PENG Fan. Obstacle avoidance method of mobile robot based on obstacle cost potential field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2289-2303. doi: 10.13700/j.bh.1001-5965.2021.0095
    [20]ZHANG Libo, LI Yupeng, ZHU Deming, FU Yongling. Inverse kinematic solution of nursing robot based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1925-1932. doi: 10.13700/j.bh.1001-5965.2021.0042
  • Cited by

    Periodical cited type(17)

    1. 耿敬,李秋洁,李向阳,李明伟. 基于LCZOA算法的季冻区大型水利工程建设进度优化方法研究. 工程管理学报. 2025(02): 86-92 .
    2. 张琴,蔡慧茹,兰明东,浦克,胡雄. 基于改进麻雀优化PID的波浪补偿控制方法. 工程科学与技术. 2024(01): 22-34 .
    3. 王彦快,米根锁,孔得盛,杨建刚,张玉. 基于MDS和改进SSA-SVM的高速铁路道岔故障诊断方法研究. 铁道学报. 2024(01): 81-90 .
    4. 夏煌智,陈丽敏,毛雪迪. 融入动态学习与高斯变异的自适应秃鹰搜索算法. 计算机与现代化. 2024(01): 117-126 .
    5. 杜云,周志奇,贾科进,丁力,卢孟杨林. 混合多项自适应权重的混沌麻雀搜索算法. 计算机工程与应用. 2024(07): 70-83 .
    6. 张迎春,姜岚,唐波,陈曦,胡辉. 基于改进麻雀搜索算法的变电构架优化方法. 振动与冲击. 2024(07): 94-101 .
    7. 游志平,马宏,梁群,王冠华. 基于IDBO-KELM的汽车零部件激光熔覆几何形貌预测建模方法研究. 应用激光. 2024(03): 51-62 .
    8. 马夏敏,张雷克,刘小莲,田雨,王雪妮,邓显羽. 基于麻雀搜索算法的梯级泵站优化调度. 水力发电学报. 2024(05): 43-53 .
    9. 王攀,胡业林. 基于改进麻雀算法的配电网故障定位. 哈尔滨商业大学学报(自然科学版). 2024(03): 307-314 .
    10. 王晨,周雪松,马幼捷,赵明,王鸿斌,赵家欣. 基于混合策略麻雀搜索算法优化的DC-DC变换器自抗扰稳压策略. 国外电子测量技术. 2024(07): 46-56 .
    11. 李嘉轩,于惠钧,马凡烁,刘紫英. 基于LF-ATSO算法在光伏系统MPPT中的研究. 现代电子技术. 2024(21): 149-155 .
    12. 李易达,王雨欣,李晨曦,赵冀,马恢,张漫,李寒. 融合改进头脑风暴与Powell算法的马铃薯多模态图像配准. 农业工程学报. 2024(19): 146-158 .
    13. 王基臣,许亮,张紫叶. 改进DBO优化CRJ网络的PEMFC剩余使用寿命预测. 电源技术. 2024(11): 2295-2303 .
    14. 李东升,朱奎,郭艳军,张树健,高明星,韩旭航. 组合神经网络的城市用水量预测模型研究与应用. 中国水利水电科学研究院学报(中英文). 2024(06): 579-589 .
    15. 苏莹莹,王升旭,白智超. 基于ISSA的多渠道易腐品供应链网络规划. 运筹与管理. 2024(11): 111-117 .
    16. 李涵,李文敬. 混合策略改进的金枪鱼群优化算法. 广西科学. 2023(01): 208-218 .
    17. 李泽政,刘卫星,李飞,李一帆,杨爱民. 基于数据增强的烧结矿转鼓强度预测研究. 烧结球团. 2023(06): 62-68 .

    Other cited types(50)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1733) PDF downloads(712) Cited by(67)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return