Xu Weiqiang, Yuan Xiugan, Xing Yuminget al. Effect of embedding nickel foam on solid-liquid phase change[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(10): 1197-1200. (in Chinese)
Citation: Liu Yuanyuan, Yang Gongliu, Li Siyiet al. Application of BP-AdaBoost model in temperature compensation for fiber optic gyroscope bias[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2): 235-239. (in Chinese)

Application of BP-AdaBoost model in temperature compensation for fiber optic gyroscope bias

  • Received Date: 19 Apr 2013
  • Publish Date: 20 Feb 2014
  • Aimed at the complex non-linearity in bias temperature error model of fiber optic gyroscope(FOG), based on back propagation (BP) neural network and adaptive boosting(AdaBoost) learning algorithm, a new BP-AdaBoost temperature compensation method was proposed to effectively enhance the FOG bias stability. The effects of model parameters on the prediction precision were also investigated. A program for determining the number of hidden layer neurons in BP neural network and the number of iterations in AdaBoost model was given. The prediction error by this BP-AdaBoost algorithm is smaller than that by single BP neural network. By large amount of experiments and calculations from FOG, the compensation results show that, the proposed approach has better performance compared with those traditional linear regression model, mixed linear regression model, and single BP neural network. Through the analysis and simulation, this approach improved is validated and has a great value of engineering reference.

     

  • [1]
    韩冰, 林玉荣, 邓正隆.光纤陀螺温度漂移误差的建模与补偿综述[J].中国惯性技术学报, 2009, 17(2):218-224 Han Bing, Lin Yurong, Deng Zhenglong.Overview on modeling and compensation of FOG temperature drift[J].Journal of Chinese Inertial Technology, 2009, 17(2):218-224(in Chinese)
    [2]
    Xiao Zhi, Ye Shijie, Zhong Bo, et al.BP neural network with rough set for short term load forecasting[J].Expert Systems with Applications, 2009, 36(1):273-279
    [3]
    韩力群. 人工神经网络理论:设计及应用[M].北京:化学工业出版社, 2002 Han Liqun.Theoretics, design and application of artificial neutral network[M].Beijing:Chemical Industry Press, 2002(in Chinese)
    [4]
    申冲, 陈熙源.基于提升小波与灰色神经网络的光纤陀螺振动误差建模[J].中国惯性技术学报, 2011, 19(5):611-614 Shen Chong, Chen Xiyuan.Vibration error modeling of FOG based on lifting wavelet and grey neural network[J].Journal of Chinese Inertial Technology, 2011, 19(5):611-614(in Chinese)
    [5]
    周琪, 秦永元, 成研, 等.光纤陀螺热致漂移误差的模糊补偿[J].中国惯性技术学报, 2010, 18(4):471-475 Zhou Qi, Qin Yongyuan, Cheng Yan, et al.Fuzzy compensation of thermally induced bias drift in fiber optical gyro[J].Journal of Chinese Inertial Technology, 2010, 18(4):471-475(in Chinese)
    [6]
    冯丽爽, 南书志, 金靖.光纤陀螺温度建模及补偿技术研究[J].宇航学报, 2006, 27(5):939-942 Feng Lishuang, Nan Shuzhi, Jin Jing.Research on modeling and compensation technology for temperature errors of FOG[J].Journal of Astronautics, 2006, 27(5):939-942(in Chinese)
    [7]
    Chen Xiyuan. Modeling temperature drift of FOG by improved BP algorithm and by Gauss-Newton algorithm[M].Berlin:Springer, 2004:805-812
    [8]
    Schapire R E. The boosting approach to machine learning:an overview[J].Nonlinear Estimation and Classification, 2003: 149- 172
    [9]
    Green M, Ekelund U, Edenbrandt L, et al.Exploring new possibilities for case-based explanation of artificial neural network ensembles[J].Neural Networks, 2009, 22(1):75-81
    [10]
    Qiao Changming, Sun Shuli, Hou Ying.Design of strong classifier based on adaboost M2 and back propagation network[J].Journal of Computational and Theoretical Nanoscience, 2013, 10(12): 2836-2840
    [11]
    Shupe D M.Thermally induced nonreciprocity in the fiber-optic interferometer[J].Applied Optics, 1980, 19(5):654-655
    [12]
    Hansen L K, Salamon P.Neural network ensembles[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001
    [13]
    Freund Y, Schapire R E, Abe N.A short introduction to boosting[J].Journal of Japanese Society for Artificial Intelligence, 1999, 14(5):771-780
    [14]
    Islam M, Yao Xin, Murase K.A constructive algorithm for training cooperative neural network ensembles[J].IEEE Transactions on Neural Networks, 2003, 14(4):820-834
    [15]
    史峰, 王辉, 郁磊, 等.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社, 2012:237-247 Shi Feng, Wang Hui, Yu Lei, et al.Analysis of MATLAB intelligent algorithm in 30 cases[M].Beijing:Beihang University Press, 2012:237-247(in Chinese)
    [16]
    陈维娜, 曾庆化, 李荣冰, 等.微机械陀螺温度混合线性回归补偿方法[J].中国惯性技术学报, 2012, 20(1):99-103 Chen Weina, Zeng Qinghua, Li Rongbing, et al.Mixed linear regression temperature compensation method for annular-vibrating MEMS gyroscope[J].Journal of Chinese Inertial Technology, 2012, 20(1):99-103(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1429) PDF downloads(521) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return