Volume 44 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
ZHU Shan, YU Youxing, HAO Weichanget al. Effect of Co and P doping on α-Fe2O3 photoelectrochemical catalysis water splitting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1141-1146. doi: 10.13700/j.bh.1001-5965.2017.0444(in Chinese)
Citation: ZHU Shan, YU Youxing, HAO Weichanget al. Effect of Co and P doping on α-Fe2O3 photoelectrochemical catalysis water splitting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1141-1146. doi: 10.13700/j.bh.1001-5965.2017.0444(in Chinese)

Effect of Co and P doping on α-Fe2O3 photoelectrochemical catalysis water splitting

doi: 10.13700/j.bh.1001-5965.2017.0444
Funds:

National Natural Science Foundation of China 51201004

More Information
  • Corresponding author: YU Youxing, E-mail:yuyouxing@buaa.edu.cn
  • Received Date: 03 Jul 2017
  • Accepted Date: 22 Sep 2017
  • Publish Date: 20 Jun 2018
  • Among many photoanode materials, the nanostructured material α-Fe2O3 is considered as one of the most promising materials due to its remarkable light absorption, good chemical stability and abundant reserves. Co and P doped α-Fe2O3 nanomaterials with excellent water splitting properties were prepared by hydrothermal method. After doping, α-Fe2O3 nanomaterial is still nanorod shaped, and the particle size of nanorods increases. Experiments show that the maximum photocurrent density has reached 0.453 mA/cm2(Co doped α-Fe2O3) and 0.276 mA/cm2(P doped α-Fe2O3) in the standard light, which are 20.6 and 12.5 times higher than those of the undoped samples, respectively. Thus, they have the property of efficient photocatalytic water splitting. At the same time, we used SEM, TEM, XRD, UV-Vis, and Mott-Schottky testing methods, which are combined with the morphology and structure characterization, to study the property influence mechanism of photoelectrochemical water splitting of α-Fe2O3.

     

  • loading
  • [1]
    FUJISHIMA A, HONDA K.Electrochemical photolysis of water at a semiconductor electrode[J].Nature, 1972, 238(5358):37-38. doi: 10.1038/238037a0
    [2]
    ASAHI R, MORIKAWA T, OHWAKI T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science, 2001, 293(5528):269-271. doi: 10.1126/science.1061051
    [3]
    CHEN X, MAO S S.Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications[J].Chemical Reviews, 2007, 107(41):2891-2959. doi: 10.1021/cr0500535
    [4]
    FRANKING R, LI L, LUKOWSKI M A, et al.Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation[J].Energy & Environmental Science, 2013, 6(2):500-512. http://pubs.rsc.org/en/content/articlehtml/2012/ee/c2ee23837c
    [5]
    CESAR I, SIVULA K, KAY A, et al.Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting[J].Journal of Physics Chemistry C, 2009, 113(2):772-782. doi: 10.1021/jp809060p
    [6]
    LIAO P, TOROKER M C, CARTER E A.Electron transport in pure and doped hematite[J].Nano Letters, 2011, 11(4):1775-1781. doi: 10.1021/nl200356n
    [7]
    ZHANG P, SHWARSCTEIN K A, HU Y S, et al.Oriented Ti doped hematite thin film as active photoanodes synthesized by facile APCVD[J].Energy & Environmental Science, 2011, 4(3):1020-1028. http://pubs.rsc.org/en/content/articlehtml/2011/ee/c0ee00656d
    [8]
    ZANDI O, KLAHR B M, HAMANN T W.Highly photoactive Ti-doped α-Fe2O3 thin film electrodes:Resurrection of the dead layer[J].Energy & Environmental Science, 2013, 6(2):634-642. http://pubs.rsc.org/en/Content/ArticleLanding/2013/EE/C2EE23620F#!divAbstract
    [9]
    RIOULT M, MAGNAN H, STANESCU D, et al.Single crystalline hematite films for solar water splitting:Ti-doping and thickness effects[J].Journal of Physics Chemistry C, 2014, 118(6):3007-3014. doi: 10.1021/jp500290j
    [10]
    ABEL A J, PATEL A M, SMOLIN S Y, et al.Enhanced photoelectrochemical water splitting via SILAR-deposited Ti-doped hematite thin films with an FeOOH overlayer[J].Journal of Materials Chemistry A, 2016, 4(17):6495-6504. doi: 10.1039/C6TA01862A
    [11]
    KUMARN P, SHARMA P, JOSHI A G, et al.Nano porous hematite for solar hydrogen production[J].Journal of Electrochemical Society, 2012, 159(8):H685-H691. doi: 10.1149/2.016208jes
    [12]
    SHEN S, GUO P, WHEELER D A, et al.Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays[J].Nanoscale, 2013, 5(20):9867-9874. doi: 10.1039/c3nr03245k
    [13]
    LIN Y, XU Y, MAYER M T, et al.Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting[J].Journal of the American Chemical Society, 2012, 134(12):5508-5511. doi: 10.1021/ja300319g
    [14]
    KOSA M, BARAD H N, SINGH V, et al.A combined computational and experimental investigation of Mg doped α-Fe2O3[J].Physical Chemistry Chemical Physics, 2016, 18(2):781-791. doi: 10.1039/C5CP05987A
    [15]
    INGLER W B, KHAN S U M.Photoresponse of spray pyrolytically synthesized copper-doped P-Fe2O3 thin film electrodes in water splitting[J].International Journal of Hydrogen Energy, 2005, 30(8):821-827. doi: 10.1016/j.ijhydene.2004.06.014
    [16]
    INGLERJR W B I, BALTRUS J P, KHAN S U M.Photoresponse of p-type zinc-doped lron(Ⅲ) oxide thin films[J].Journal of the American Chemical Society, 2004, 126(33):10238-10239. doi: 10.1021/ja048461y
    [17]
    QI X, SHE G, WANG M, et al.Electrochemical synthesis of p-type Zn-doped α-Fe2O3, nanotube arrays for photoelectrochemical water splitting[J].Chemical Communications, 2013, 49(51):5742-5744. doi: 10.1039/c3cc40599k
    [18]
    SCHREBLER R S, BALLESTEROS L, BURGOS A, et al.Electrodeposited nanostructured α-Fe2O3 photoanodes for solar water splitting:Effect of surface co-modification on photoelectrochemical performance[J].Journal of the Electrochemical Society, 2011, 158(8):D500-D505. doi: 10.1149/1.3599059
    [19]
    LIAO P, KEITH J A, CARTER E A.Water oxidation on pure and doped hematite (0001) surfaces:Prediction of Co and Ni as effective dopants for electrocatalysis[J].Journal of the American Chemical Society, 2012, 134(32):13296-13309. doi: 10.1021/ja301567f
    [20]
    LEE C Y, WANG L, KADO Y, et al.Si-doped Fe2O3, nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting[J].Electrochemistry Communications, 2013, 3(5):308-311. http://www.doc88.com/p-6711224005013.html
    [21]
    KAY A, CESAR I, GRAETZEL M.New Benchmark for water photooxidation by nanostructured α-Fe2O3 films[J].Journal of the American Chemical Society, 2006, 128(49):15714-15721. doi: 10.1021/ja064380l
    [22]
    ZHANG Y, JIANG S, SONG W, et al.Nonmetal P-doped hematite photoanode with enhanced electron mobility and high water oxidation activity[J].Energy & Environmental Science, 2015, 8(4):1231-1236. http://or.nsfc.gov.cn/handle/00001903-5/197240
    [23]
    LIN Y, ZHOU S, SHEEHAN S W, et al.Nanonet-based hematite heteronanostructures for efficient solar water splitting[J].Journal of the American Chemical Society, 2011, 133(8):2398-2401. doi: 10.1021/ja110741z
    [24]
    XI L, TRAN P D, CHIAM S Y, et al.Co3O4-decorated hematite nanorods as an effective photoanode for solar water oxidation[J].Journal of Physics Chemistry C, 2012, 116(26):13884-13889. doi: 10.1021/jp304285r
    [25]
    LIAN X, XIN Y, LIU S, et al.Enhanced photoelectrochemical performance of Ti-doped hematite thin films prepared by the sol-gel method[J].Applied Surface Science, 2012, 258(7):2307-2311. doi: 10.1016/j.apsusc.2011.10.001
    [26]
    MORRISH R, RAHMAN M, MACELROY J M, et al.Activation of hematite nanorod arrays for photoelectrochemical water splitting[J].CHEMSUSCHEM, 2011, 4(4):474-479. doi: 10.1002/cssc.201100066
    [27]
    MENG X, QIN G, GODDARD A G, et al.Theoretical understanding of enhanced photoelectrochemical catalytic activity of Sn-doped hematite:Anisotropic catalysis and effects of morin transition and Sn doping[J].Journal of Physics Chemistry C, 2013, 117(8):3779-3784. doi: 10.1021/jp310740h
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(705) PDF downloads(400) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return