ZHANG Junyou, QI Hong, WANG Yifei, et al. Simultaneous inversion of fractal morphology and particle size distribution of soot aggregate based on light scattering intensity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 925-932. doi: 10.13700/j.bh.1001-5965.2019.0339(in Chinese)
Citation: ZHANG Junyou, QI Hong, WANG Yifei, et al. Simultaneous inversion of fractal morphology and particle size distribution of soot aggregate based on light scattering intensity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 925-932. doi: 10.13700/j.bh.1001-5965.2019.0339(in Chinese)

Simultaneous inversion of fractal morphology and particle size distribution of soot aggregate based on light scattering intensity

doi: 10.13700/j.bh.1001-5965.2019.0339
Funds:

National Natural Science Foundation of China 51976044

National Natural Science Foundation of China 51806047

More Information
  • Corresponding author: QI Hong, E-mail: qihong@hit.edu.cn
  • Received Date: 28 Jun 2019
  • Accepted Date: 14 Aug 2019
  • Publish Date: 20 May 2020
  • The use of light scattering signals to achieve the simultaneous inversion of the fractal morphology and particle size distribution parameters of soot aggregates have important application value in flame radiation heat transfer simulation and pollution control. The direct model of inversion is based on the Rayleigh-Debye-Gans Polydisperse Fractal Approximation (RDG-PFA) light scattering theory. Two signal schemes were investigated: multi-angle scattering, multi-angle scattering and collimated transmittance. Before the inversion, by comparing the residual fitness value distributions of the two signal schemes, it is found that the simultaneous use of scattering and transmission signals effectively reduces the ill-posedness of the inverse problem. The inversion process is based on the Covariance Matrix Adaptive Evolutionary Strategy (CMA-ES) algorithm, which has a strong local search capability and provides a guarantee for fast and stable inversion of each target parameter. The final inversion results demonstrate the feasibility and universality of the method in a large search space. And it is also proved that the combination of multi-angle scattering and collimated transmittance effectively improves the inversion accuracy of the target parameters.

     

  • [1]
    BOND T C, BERGSTROM R W.Light absorption by carbonaceous particles:An investigative review[J].Aerosol Science and Technology, 2006, 40(1):27-67. doi: 10.1080/02786820500421521
    [2]
    李红红.航空发动机二维模型燃烧室中碳黑颗粒生成数值模拟[D].南京: 南京航空航天大学, 2008: 1-3.

    LI H H.Research on numerical simulation of soot formation in a 2-D simplified gas turbine combustor[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 1-3(in Chinese).
    [3]
    张群杰.航空发动机燃烧室中辐射换热的数值研究[D].沈阳: 沈阳航空航天大学, 2012: 1-3.

    ZHANG Q J.Numerical study of radiative transfer in areo-engine combustor[D].Shenyang: Shenyang Aerospace University, 2012: 1-3(in Chinese).
    [4]
    RAMANATHAN V, CARMICHAEL G.Global and regional climate changes due to black carbon[J].Nature Geoscience, 2008, 1(4):335-358.
    [5]
    GRAHAM T J, SCHLESINGER R B.Cardiovascular health and particulate vehicular emissions:A critical evaluation of the evidence[J].Air Quality Atmosphere & Health, 2010, 3(1):3-27. doi: 10.1007-s11869-009-0047-x/
    [6]
    LUO J, ZHANG Y, ZHANG Q, et al.Sensitivity analysis of morphology on radiative properties of soot aerosols[J].Optics Express, 2018, 26(10):A420. doi: 10.1364/OE.26.00A420
    [7]
    SORENSEN C M, CAI J, LU N.Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames[J].Applied Optics, 1992, 31(30):6547-6557. doi: 10.1364/AO.31.006547
    [8]
    IYER S S, LITZINGER T A, LEE S Y, et al.Determination of soot scattering coefficient from extinction and three-angle scattering in a laminar diffusion flame[J].Combustion & Flame, 2007, 149(1-2):206-216.
    [9]
    LINK O, SNELLING D R, THOMSON K A, et al.Development of absolute intensity multi-angle light scattering for the determination of polydisperse soot aggregate properties[J].Proceedings of the Combustion Institute, 2011, 33(1):847-854.
    [10]
    AMIN H M F, ROBERTS W L.Soot measurements by two angle scattering and extinction in an N2-diluted ethylene/air counterflow diffusion flame from 2 to 5 atm[J].Proceedings of the Combustion Institute, 2016, 36(1):861-869.
    [11]
    MOGHADDAM S T, HADWIN P J, DAUN K J.Soot aggregate sizing through multiangle elastic light scattering:Influence of model error[J].Journal of Aerosol Science, 2017, 111:36-50. doi: 10.1016/j.jaerosci.2017.06.003
    [12]
    SORENSEN C M.Light scattering by fractal aggregates:A review[J].Aerosol Science and Technology, 2001, 35(2):648-687. doi: 10.1080/02786820117868
    [13]
    MISHCHENKO M I, TRAVIS L D, LACIS A A.Scattering, absorption, and emission of light by small particles[M].Cambridge:Cambridge University Press, 2002:101-442.
    [14]
    OLTMANN H, REIMANN J, WILL S.Wide-angle light scattering (WALS) for soot aggregate characterization[J].Combustion & Flame, 2010, 157(3):516-522.
    [15]
    OLTMANN H, REIMANN J, WILL S.Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS)[J].Applied Physics B, 2012, 106(1):171-183.
    [16]
    HANSEN N.The CMA evolution strategy: A tutorial[EB/OL].(2016-04-04)[2019-06-20].
    [17]
    DALZELL W H, SAROFIM A F.Optical constants of soot and their application to heat-flux calculations[J].Journal of Heat Transfer, 1969, 91(1):100-104. doi: 10.1115/1.3580063
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(743) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return