Wang Yanli, Chen Zhe. Extraction of Linear Features of SAR Images Based on Fuzzy and Least Square[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(4): 342-345. (in Chinese)
Citation: Large eddy simulation of film cooling under rotating condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(5): 529-533. (in Chinese)

Large eddy simulation of film cooling under rotating condition

  • Received Date: 01 Apr 2009
  • Publish Date: 30 May 2010
  • Large eddy simulation was used to predict flow and heat transfer of film cooling on a flat plate perforated by 35° streamwise inclined cylindrical hole of 4mm under stationary and rotation conditions. The predicted nondimensional velocity profiles compared well with available experimental data in stationary case, justifying present simulations. But the discrepancy of temperature predicted by present work and that in reference numerical work was obvious. After introducing system rotation at the same blowing ratio and Reynolds number, vorticity distributions showed increasing distinctness along with the increased angular velocity. And the trajectory of shear layer between mainflow and coolant deviated towards spanwise under rotation condition, leading to the asymmetry of the counter rotating vortex pair after coolant injection. Furthermore, the dynamics of coherent structures detected in three cases also demonstrate the rotation effect, which significantly influences the mixing of mainflow and coolant and the consequential heat transfer.

     

  • Relative Articles

    [1]LIU Zengxu, YU Kaikai, FU Kexin, LIN Rou, XU Jinglei. Design and flow characteristics research of exhaust systems with wide altitude and speed ranges[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0781
    [2]CHEN H T,SU Z K,LI C T,et al. Trajectory design for straight-circulating flight transition of aerial recovery towing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2565-2574 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0692.
    [3]ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341.
    [4]SUN J C,KANG C X,XIE Y Q,et al. Thermal design and validation of high temperature material science experiment system on China space station[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):814-820 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0365.
    [5]ZHANG Wei, FENG Wen-quan, SUN Guo-tong, WANG Chun-lei. Guide star assisted moving faint object detection system simulation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0503
    [6]XU Zhaosheng, WANG Le, XI Jianxiang, LIU Nanchi, LI Junlong. Induced attack on UAV swarms with switching directed topologies[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0488
    [7]CHEN Yong, ZHANG Bing-wang, XIN Zhao-feng. Security handover scheme for high-speed railway symbiotic network based on NTRU lattice[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0010
    [8]LI Wei, ZHAO Zhigang, ZHAO Xiangtang, LI Zixuan, GANG Zheng. Workspace stability evaluation of multi-engine suspension system based on EWM -TOPSIS[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0546
    [9]SHAO Z Z,ZHENG K,DONG S,et al. Design of double bending rotary ultrasonic elliptical vibration machining system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2912-2918 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0712.
    [10]SUN X Z,WU J,SHI L X,et al. Dynamic force equalization for dual redundancy electro-mechanical actuation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1208-1218 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0466.
    [11]BAI L Y,WU Z G,YANG C. Nonlinear flutter modes and flutter suppression of an all-movable fin with freeplay[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2361-2373 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0162.
    [12]XU Meng, LI Yan, GAO Jie, XU Hai, GAO Bing. Design of aircraft anti-skid braking system integrated sliding mode control based on novel convergence law[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.1085
    [13]MA L Q,SUN X Z. Design of flight control system for BWB civil aircraft considering safety[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):804-814 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0341.
    [14]LU P,ZHAO Z M,GAO T,et al. Thermal control design and verification for high resolution stereo mapping camera system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):768-779 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0854.
    [15]ZHANG J,WEN C,YANG X,et al. Design of an electric drive aircraft tug control system based on ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1017-1026 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0377.
    [16]WANG Z D,GUANG C H,WANG L Q,et al. Design and implementation of robot-assisted subretinal injection system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2406-2414 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0667.
    [17]HAN Xiao, ZHOU Ying, HUANG Hai, SHAO Jing-yi. Design and Verification of High-precision Dynamic Temperature Control System[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0297
    [18]YUAN M Y,ZHOU J H,HAO Y,et al. Design of contactless power supply system for stratospheric airship anemometer[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):972-980 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0344.
    [19]LI Y C,LI Q H,ZHANG X S,et al. N-dot control method of turbofan engine based on active switching logic[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3156-3166 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0022.
    [20]XIE C C,ZHU L P,MENG Y,et al. Design of adaptive deformation wing control system based on system identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2761-2770 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0717.
  • Cited by

    Periodical cited type(6)

    1. 张青松,曲奕润,刘添添. 锂离子电池热失控气体毒性风险分析方法. 北京航空航天大学学报. 2024(01): 12-19 . 本站查看
    2. 张青松,曲奕润. 循环老化三元锂离子电池热失控气体毒性研究. 北京航空航天大学学报. 2024(06): 1761-1769 . 本站查看
    3. 宋先钊,邓树新,何勇,卢浩,李文宇,王明洋. 地下电化学储能设施爆炸防控措施研究进展. 防护工程. 2024(03): 69-78 .
    4. 刘碧波,文龙,卫佳,付立家. 基于多传感器融合的公路隧道新能源汽车火灾快速预警救援系统. 科技和产业. 2024(16): 205-210 .
    5. 卫寿平,孙杰,李吉刚,周添,陈静,党胜男,唐娜,张帆. 锂离子电池热失控气体产物检测及分析技术研究进展. 储能科学与技术. 2024(11): 4155-4176 .
    6. 谭则杰,周晓燕,徐振恒,樊小鹏,田兵,王志明,李秋桐,付佳龙,李志勇,郭新. 锂离子电池热失控监测与预警的气敏技术研究进展. 储能科学与技术. 2023(11): 3456-3470 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3520) PDF downloads(1392) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return