Volume 36 Issue 4
Apr.  2010
Turn off MathJax
Article Contents
ZHANG Feng-Yu, YANG Meng, WANG Song-Yan, et al. Class of multiple-revolution impulsive rendezvous with priority of minimum fuel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(4): 407-410. (in Chinese)
Citation: ZHANG Feng-Yu, YANG Meng, WANG Song-Yan, et al. Class of multiple-revolution impulsive rendezvous with priority of minimum fuel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(4): 407-410. (in Chinese)

Class of multiple-revolution impulsive rendezvous with priority of minimum fuel

  • Received Date: 03 Apr 2009
  • Publish Date: 30 Apr 2010
  • For two-impulsive rendezvous using multiple-revolution Lambert solutions, the relationship between characteristic velocity (Δv) and semi-major axis of transfer trajectory was considered. It was proposed that the optimal solution actually is the less fuel trajectory among 2N+1 trajectories satisfying time constraint, but not the minimum fuel trajectory(MFT). As the first impulse of two-impulsive rendezvous was dissembled into two impulses with the same direction, a chaser could consume the redundant transfer time by coasting N revolutions on a specified orbit, and rendezvous a target on MFT in the rest transfer time. It was proved that Δv of this rendezvous coincide with that of minimum fuel transfer in geometry. The existence of solutions was given. Some simulations show that this rendezvous can save fuel and the existence of solutions is more loosely restrictive on the length of transfer time than two-impulsive rendezvous using multiple-revolution Lambert solutions.

     

  • loading
  • [1] Bate R R, Muler D D,White J E.航天动力学基础[M].吴鹤鸣,李肇杰,译.北京:北京航空航天大学出版社,1990:176-185 Bate R R,Muler D D,White J E.Fundamentals of astrodynamics[M].Translated by Wu Heming,Li Zhaojie.Beijing:Beijing University of Aeronautics and Astronautics Press,1990:176-185 (in Chinese) [2] Battin R H. Lambert-s problem revisited [J].AIAA Journal,1977,15(5):707-713. [3] Battin R H, Vaughan R M.An elegant Lambert algorithm[J].J Guidance,1984,7(6):662-670. [4] Vaughan R M. An improvement of Gauss-s method for solving Lambert-s problem. Charles Stark Draper Lab,Inc,Cambridge,Mass,Report T-813,1983. [5] Battin R H. An introduction to the mathematics and methods of astrodynamics[M].New York:AIAA Education Series,1987. [6] Prussing J E, Conway B A.Orbital mechanics[M].New York:Oxford University Press,1993. [7] Prussing J E. Optimal two-impulse rendezvous using multiple-revolution Lambert solutions[J].Journal of Spacecraft and Rockets,2003,40(6):952-959. [8] Prussing J E. Geometrical interpretation of the angles α and β in Lambert-s problem[J].J Guidance and Control,1979,2(5):442- 443. [9] Sandrik S. Primer-optimized results and trends for circular phasing and other circle-to-circle impulsive coplanar rendezvous. USA:Department of Aerospace Engineering,University of Illinois at Urbana-Champaign,2006. [10] 陈统, 徐世杰.基于遗传算法的最优Lambert双脉冲转移[J].北京航空航天大学学报,2007,33(3):273-277 Chen Tong,Xu Shijie.Optimal Lambert two-impulse transfer using genetic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(3):273-277 (in Chinese) [11] 卢山, 陈统,徐世杰.基于自适应模拟退火遗传算法的最优Lambert转移[J].北京航空航天大学学报,2007,33(10):1191-1195 Lu Shan,Chen Tong,Xu Shijie.Optimal Lambert transfer based on adaptive simulated annealing genetic algorithm[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(10):1191-1195 (in Chinese) [12] Shen Haijun, Panagiotis Tsiotras.Optimal two-impulse rendezvous using multiple-revolution Lambert solutions [J].Journal of Guidance,Control,and Dynamics,2003,26(1):50-61. [13] 韩潮, 谢华伟.空间交会中多圈Lambert变轨算法研究[J].中国空间科学技术,2004(5):9-14 Han Chao,Xie Huawei.Research on algorithm of loopy Lambert transfer in space rendezvous[J].Chinese Space Science and Technology,2004(5):9-14(in Chinese) [14] 朱仁璋, 蒙薇.航天器交会两点边界值问题[J].宇航学报,2006,27(6):1182-1186 Zhu Renzhang,Meng Wei.Two point boundary value problem in space rendezvous [J].Journal of Astronautics,2006,27(6):1182-1186 (in Chinese) [15] 朱仁璋, 蒙薇,胡锡婷.航天器交会中的Lambert问题[J].中国空间科学技术,2006(6):49-55 Zhu Renzhang,Meng Wei,Hu Xiting.Lambert-s problem in spacecraft rendezvous [J].Chinese Space Science and Technology,2006(6):49-55 (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3514) PDF downloads(1520) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return