Citation: | Jia Rongfei, Jin Maozhong, Wang Xiaoboet al. Query clustering using user-query logs[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(4): 500-503. (in Chinese) |
[1] Wen Jirong,Nie Jianyun,Zhang Hongjiang.Query clustering using user logs[J].ACM Transactions on Information Systems,2002,20(1):59-81 [2] Fonseca B M,Golgher P B,De Moura E S,et al.Using association rules to discovery search engines related queries //1st Latin American Web Congress.Santiago:Citeseer,2003:66-71 [3] Beeferman D,Berger A L.Agglomerative clustering of a search engine query log //Proceedings of the 6th ACM SIGKDD International conference on Knowledge discovery and data mining.New York:ACM Press,2000:407-416 [4] Baeza-Yates R A,Tiberi A.Extracting semantic relations from query logs //Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2007:76-85 [5] Chan W,Leung W,Lee D.Clustering search engine query log containing noisy clickthroughs //Proceedings of SAINT Conference 2004.Tokyo:IEEE Computer Society,2004:305-308 [6] 张辉,谢科,庞斌,等.一种基于关键特征的搜索引擎结果聚类算法[J].北京航空航天大学学报,2007,33(6):739-742 Zhang Hui,Xie Ke,Pang Bin,et al.Key-feature-based clustering algorithm for search engine results[J].Journal of Beijing University of Aeronautics and Astronautics,2007,33(6):739-742(in Chinese) [7] 张刚,刘悦,郭嘉丰,等.一种层次化的检索结果聚类方法[J].计算机研究与发展,2008,45(3):542-547 Zhang Gang,Liu Yue,Guo Jiafeng,et al.A hierarchical search result clustering method[J].Journal of Computer Research and Development,2008,45(3):542-547(in Chinese) [8] Yi J,Maghoul F.Query clustering using click-through graph //Proceedings of the 18th International Conference on World Wide Web.Madrid:ACM Press,2009:1055-1056 [9] Deshpande M,Karypis G.Item-based top-n recommendation algorithms[J].ACM Transactions on Information Systems,2004,22(1):143-177 [10] Ester M,Kriegel H P,Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise //Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland:AAAI Press,1996:226-231
|