Sun Huiqin, Xiong Zhang. Design and implementation of materialized cubes genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(07): 610-613. (in Chinese)
Citation: Lü Yongle, Lang Rongling, Lu Hui, et al. Prediction of aeroengine-s performance parameter combining RBFPN and FAR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(2): 131-134. (in Chinese)

Prediction of aeroengine-s performance parameter combining RBFPN and FAR

  • Received Date: 07 Jan 2009
  • Publish Date: 28 Feb 2010
  • Exhaust gas temperature is one of the performance parameters which reflect aeroengines- running state most efficiently. The prediction analysis of the sequent takeoff exhaust gas temperature margin (EGTM) is helpful to estimate aeroengines- future working performance, which can offer sufficient time reference and decision-making support for the fault prevention and elimination. When building the prediction model according to the EGTM historical observation sequence which was characterized by nonlinearity and nonstationarity, a solution combining radial basis function prediction networks (RBFPN) and functional coefficient autoregressive model (FAR) was proposed based on the sequence partition with singular value decomposition filtering algorithm. The respective advantages of RBFPN and FAR in modeling the trend element and the random element of EGTM sequence were taken complementally and cooperatively. It is indicated by experimentation that the solution can effectively restrain the shortcomings of separate employment of RBFPN or FAR, and improve the prediction performance.

     

  • Relative Articles

    [1]GUO Shenge, LI Qiao, ZHUO Yuedong. Real-Coefficient Amplify-and-Forward Method for WAIC[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0695
    [2]LIU F,YANG Y Y,WANG X. UAV tracking algorithm based on feature fusion and block attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1566-1578 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0281.
    [3]CHEN H T,SU Z K,LI C T,et al. Trajectory design for straight-circulating flight transition of aerial recovery towing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2565-2574 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0692.
    [4]GOU J Z,LIANG T J,TAO C G,et al. Formation control and aggregation method of UAV based on consensus theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1646-1654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0470.
    [5]Huang T T. A varying coefficient geographically weighted spatial lag model for compositional data[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2256-2264 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0347.
    [6]YONG Jia-wang, DONG Yi-yao, LI Yan-song, CHEN Yan-yan, FENG Neng-lian. A fusion method for automobile tire-road friction coefficient observation[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0667
    [7]ZUO L,ZHANG X L,LI Z Y,et al. UAV control law design method based on active-disturbance rejection control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1512-1522 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0488.
    [8]WU Q S,GUO J,KANG Z L,et al. Maritime mission assignment of UAV clusters based on γ random search strategy[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3872-3883 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0882.
    [9]ZHANG J H,ZHAO W,WANG Z C,et al. UAV pedestrian tracking algorithm based on detection and re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2538-2546 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0675.
    [10]LIU S S,LI X,MAN H J,et al. Ballistic coefficient solution for non-cooperative targets and its application[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1036-1043 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0414.
    [11]WU X J,HAN X R,WU X L,et al. Prescribed performance control for quadrotor UAV with unknown kinetic parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2587-2595 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0714.
    [12]LYU Z Y,NIE X Y,ZHAO A B. Prediction of wing aerodynamic coefficient based on CNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):674-680 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0276.
    [13]PAN D,ZHENG J H,GAO D. Fast 3D path planning of UAV based on 2D connected graph[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3419-3431 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0147.
    [14]SUN D,GAO D,ZHENG J H,et al. UAV reinforcement learning control algorithm with demonstrations[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1424-1433 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0466.
    [15]JIN G D,XUE Y L,TAN L N,et al. Aerial object tracking algorithm for UAVs based on dual-attention shuffling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):53-65 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0177.
    [16]WANG L N,LIU Z B,YUAN J B,et al. Adaptive fault diagnosis and estimation for quadrotor UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2395-2405 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0656.
    [17]XU Tian, HE Jingsha, ZHU Nafei, DENG Wanhang, WU Shuang, TA Yongjun. VWKNN location fingerprint positioning algorithm based on improved discrete coefficient[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1242-1251. doi: 10.13700/j.bh.1001-5965.2021.0019
    [18]ZHANG Ruixin, LI Ning, ZHANG Xiaxia, ZHOU Huiyu. Low-altitude UAV detection method based on optimized CenterNet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2335-2344. doi: 10.13700/j.bh.1001-5965.2021.0108
    [19]Zeng Jia, Shen Gongzhang, Xia Jie, Yang Lingyu. Cooperative trajectory planning for UAV towards moving target aground[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(7): 887-890.
    [20]Zhao Yuanli, Zuo Linxuan, Yu Dongsheng, Wang Jinjun. Application of Gurney flap on certain target drone[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8): 913-916.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3753) PDF downloads(1053) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return