Citation: | Yu Jian, Yan Chao. On the performance of two shock-capturing schemes[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(1): 10-13. (in Chinese) |
[1] Van Leer B.Towards the ultimate conservation difference scheme V:a second-order sequal to Godunov’s method[J].Journal of Computational Physics,1979,32(1):101-136 [2] Harten A,Engquist B,Osher S,et al.Uniformly high-order accurate essentially non-oscillatory schemes[J].Journal of Computational Physics,1987,71(2):231-303 [3] Liu X D,Osher S,Chan T.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics,1994,115(1):200-212 [4] Jiang G S,Shu C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics,1996,126(1):202-228 [5] Shen Y Q,Zha G C.Improvement of the WENO schemes smoothness estimator .AIAA-2008-3993,2008 [6] Nichols R H,Tramel R W,Buning P G.Evaluation of two high-order weighted essentially nonoscillatory schemes[J].AIAA Journal,2008,46(12):3090-3102 [7] Ladeinde F,Alabi K,Safta C,et al .The first high-order CFD simulation of aircraft:challenges and opportunities .AIAA-2006-1526,2006 [8] Rider W J.Methods for extending high-resolution schemes to non-linear systems of hyperbolic conservation laws[J].International Journal for Numerical Methods in Fluids,1993,17(10):861-885 [9] Titarev V A,Toro E F.Finite-volume WENO schemes for three-dimensional conservation laws[J].Journal of Computational Physics,2004,201(1):238-260 [10] Woodward P,Colella P.The numerical simulation of two-dimensional fluid flow with strong shocks[J].Journal of Computational Physics,1984,54(1):115-173 [11] Langseth J O,Leveque R J.A wave propagation method for three-dimensional hyperbolic conservation laws[J].Journal of Computational Physics,2000,165(1):126-166
|