Hou Yunyi, Jing Qianfeng, Ma Guangfuet al. Orbital rendezvous control method for berthing and tracking approach[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(8): 1124-1128. (in Chinese)
Citation: Zhang Jinbai, Zheng Zhaohu. Direct numerical simulation of turbulent channel flow of polymer solution[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(12): 1417-1420. (in Chinese)

Direct numerical simulation of turbulent channel flow of polymer solution

  • Received Date: 05 Dec 2008
  • Publish Date: 31 Dec 2009
  • The drag reduction characteristic of polymer turbulence in channel flows was investigated using the direct numerical simulation (DNS). In the simulations, the spectral methods employing Fourier series and Chebyshev polynomial were used to make the spatial discretization and the time-splitting method with second-order time accuracy was adopted to carry out time advancement. For three-dimension turbulent channel flows of a polymer solution, based on the FENE-P model, the obtained efficiency of drag reduction for the four cases show that there exists the "onset" phenomena. Based on the O-B model, the simulations show that in low drag reduction, the effect of polymer on turbulence mainly occurs in the near wall region, and in high drag reduction, the effect of polymer on turbulence occurs in the whole flowfield.

     

  • [1] Virk P S,Baher H.The effect of polymer concentration on drag reduction[J].Chem Eng Sci,1970,25(7):1183-1189  [2] Lumley J L.Drag reduction by additives[J].Annu Rev Fluid Mech,1969,1:367-384  [3] De Gennes P G.Introduction to polymer dynamics[M].Cambridge University Press,1990:34-51  [4] Sureshkumar R,Beris A N,Handler R A.Direct numerical simulation of the turbulent channel flow of a polymer solution[J].Phys Fluids,1997,9:743-754  [5] Housiadas K D,Beris A N.Polymer-induced drag reduction:effects of the variations in elasticity and inertia in turbulent viscoelastic channel flow[J].Phys Fluids,2003,15(8):743-754  [6] Kamiadakis G E,Israeli M,Orsag S A.High order splitting methods for the imcompresible Navier-Stockes equation[J].J Com Phys,1991,97(2):414-443  [7] Min T,Yoo J Y,Choi H,et al.Drag reduction by polymer additives in a turbulent channel flow[J].J Fluid Mech 2003,486:213-238
  • Relative Articles

    [1]YANG G Y,ZHANG Y,HU L X,et al. Application of inclined slot in airfoil stall control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2601-2618 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0652.
    [2]QUAN Q,CHEN L. Control of non-affine nonlinear systems: A survey[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2367-2381 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0642.
    [3]ZHANG Q C,WANG L,XI J X,et al. Tracking control of unmanned aerial vehicle swarms with leader-following double formation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2331-2342 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0607.
    [4]CHEN Qing-yang, XIN Hong-bo, LU Ya-fei, WANG Peng, WANG Yu-jie, ZHENG Jun-fei. Ground Taxiing Lateral Deviation Correction Control for High Subsonic UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0635
    [5]HE Chi-yuan, CHENG Shao-xu, XU Lin-feng, MENG Fan-man, WU Qing-bo. A Continual Learning Method Based on Differential Feature Distillation for Multimodal Network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0369
    [6]CHANG Jiaming, LI Sulan, DUAN Xuechao, ZHANG Wei, WANG Chenyang. Anti-stochastic disturbance control of airship[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0489
    [7]LIU H,HUANG S,TU H Y. Quadrotor sliding mode control based on predefined time[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1665-1674 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0481.
    [8]MENG Z P,YANG L Q,WANG B,et al. ADRC design for folding wing vehicles based on improved equilibrium optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2449-2460 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0698.
    [9]CAI H,SHI P. Attitude control method for flexible spacecraft based on LPV model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3921-3929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0880.
    [10]JIN L,YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2404-2412 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0666.
    [11]ZHAO Q,ZHEN Z Y,GONG H J,et al. UAV formation control based on dueling double DQN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2137-2146 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0601.
    [12]ZHOU B J,YU C Q,TAN L L,et al. Fast leveling control technology of vehicle platform based on interference compensation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1495-1503 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0447.
    [13]DUAN B,YANG S,LI A J. Design of LPV control law for unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):879-890 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0340.
    [14]XU N,XU L L,HE F C. Total focusing imaging in anisotropic additive manufacturing components using ultrasonic array[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1063-1070 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0404.
    [15]TAN Cao, YU Peng, LI Bo, LU Jia-yu, REN Yun-yun. Pressure Cascade Control of Brake-by-wire Unit Based on Direct Drive Pump-Valve Cooperative[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0216
    [16]TANG Y C,ZHU Q H,LIU F C,et al. Design of robust controller for single outrigger of vibration active isolation platform based on LPV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1796-1801 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0513.
    [17]YAN H B,XU W B,HUANG L E. Design of quadrotor attitude controller based on improved ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3283-3292 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0129.
    [18]WANG S Y,ZHANG J,YANG L Y. Attitude control law based on L1-ITD for a tail-sitter UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2501-2509 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0681.
    [19]WANG T,JIAO H C,LIU J,et al. Design of attitude control method for ultra-low-orbit satellite with pneumatic steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):548-558 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0265.
    [20]ZHANG Libo, LI Yupeng, ZHU Deming, FU Yongling. Inverse kinematic solution of nursing robot based on genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1925-1932. doi: 10.13700/j.bh.1001-5965.2021.0042
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3628) PDF downloads(1217) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return