Qi Bojin, Xu Haiying, Huang Songtao, et al. Ultrasonic frequency pulse tungsten inert gas welding power source topology and welding applicability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(1): 61-64. (in Chinese)
Citation: Li Huifeng, Wang Jian, Sun Wenchonget al. GA based design of sliding mode control law for hypersonic vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(9): 1144-1147. (in Chinese)

GA based design of sliding mode control law for hypersonic vehicle

  • Received Date: 17 Sep 2008
  • Publish Date: 30 Sep 2009
  • A sliding mode control law was presented according to the six DOF nonlinear model of pitching channel of hypersonic vehicle generic hypersonic vehicle(GHV). First, for making a good use of sliding mode control theory, the six DOF model was transformed into an affine system through input-output feedback linearization. Then, the structure of sliding mode control law was designed for the affine system. After the structure design of sliding mode control law, the control parameters of sliding mode control law were designed based on genetic algorithm. The design process of sliding mode control parameters takes into account stochastic robustness strategy, which is to make sure that the possibility of loss of flight control stability or robustness achieves least through control parameter optimization based on genetic algorithm, when dealing with parameter uncertainties in stochastic uniform distribution. Simulations show that the method is able to satisfy both the robustness of flight control system and the convergence of parameter optimization process on request.

     

  • [1] Heller M, Sachs G. Flight dynamics and robust control of a hypersonic test vehicle with ramjet propulsion . AIAA-98-1521, 1998 [2] Wu S F, Engelen C J H, Babuska R, et al. Intelligent flight controller design with fuzzy logic for an atmospheric re-entry vehicle . AIAA-2000-0174, 2000 [3] 冯勇,郑雪梅,鲍晟.多变量线性模型不确定系统终端滑模分解控制方法[J].控制理论与应用,2004,21(1):11-16 Feng Yong, Zheng Xuemei, Bao Sheng. Terminal sliding mode decomposed control of multivariable linear uncertain systems[J]. Control Theory and Applications, 2004, 21(1):11-16(in Chinese) [4] Wang Qian, Stengel R. Robust nonlinear control of a hypersonic aircraft . AIAA-99-4000, 1999
  • Relative Articles

    [1]WANG X L,YIN H,DING J F. Aircraft surveillance data fusion method in flight area based on Trans-Attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1215-1223 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0234.
    [2]ZHANG Z W,PENG C,CHE Z Y,et al. Servo drive unit reliability modeling with multi-stage degradation data fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):692-704 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0200.
    [3]DENG J X,CHEN L,LU S T,et al. Damage distribution of composite structures of a certain type aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):920-930 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0379.
    [4]XIAHOU Chao, ZHOU Hao, CHEN Wanchun. Cooperative Optimal Analytical Guidance Method Considering Time-Varying Speed and Information Sharing[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0707
    [5]YIN Q L,CHEN Q,WANG Z Y,et al. Trajectory programming method of gliding-guided projectiles for penetration[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3151-3161 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0049.
    [6]GAO Y,HU Y,CHEN J Y,et al. Improved predictor-corrector guidance method for time-coordination entry[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1721-1730 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0530.
    [7]ZHOU N,ZHANG S L,ZHANG C. Discrete sparrow search algorithm incorporating rough data-deduction for solving hybrid flow-shop scheduling problems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):398-408 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0424.
    [8]LANG B,WANG H,GONG J. A small sample data-driven radar compound jamming lightweight perception network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):1005-1014 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0343.
    [9]WANG J D,WANG X,TIAN Y R,et al. Threat assessment of radar radiation sources based on behavioral characteristics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3196-3207 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0848.
    [10]XU J M,HUANG Z G,LI R. LEO satellite positioning method and simulation verification aided by airborne navigation equipment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3230-3238 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0759.
    [11]LI J G,CHEN X,DONG Y F,et al. RTPN interception guidance law for maneuvering target based on collaborative filtering trajectory prediction[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):86-96 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0211.
    [12]ZHANG S,SONG T L,JIAO W,et al. Cooperative guidance method with interception time constraint[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1956-1963 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0569.
    [13]ZHANG Y,ZHANG D D,MENG W T,et al. Soil moisture retrieval using CYGNSS/SMAP data fusion semi-empirical model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2873-2882 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0044.
    [14]GAO H H,CHAO Q,XU Z,et al. Piston pump fault diagnosis based on Siamese neural network with small samples[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):155-164 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0213.
    [15]XIAO Y,CHEN X,YANG L Y,et al. Analysis of radome error on guidance loop stability[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3066-3074 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0780.
    [16]JI Xiaoqi, SONG Zikai, YU Junqing. Player movement data analysis on soccer field reconstruction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1543-1552. doi: 10.13700/j.bh.1001-5965.2022.0131
    [17]WU Sunyong, ZHOU Yusong, XIE Yun, CAI Ruhua, FAN Xiangting. Extended target tracking algorithm based on MM-GGIW-PMBM filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2356-2364. doi: 10.13700/j.bh.1001-5965.2021.0162
    [18]XIA Fei, XUE Jianghong, HE Zanhang, JIN Fusong. Interfacial crack growth of delaminated composite laminates under hygrothermal environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2460-2472. doi: 10.13700/j.bh.1001-5965.2021.0137
    [19]SHU Hong-bin, YU Chuan-qiang, LIU Zhi-hao, TANG Sheng-jin, CHEN Jian-wei. State estimation of multi-axle special vehicles by fusion of neural network and unscented Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0535
    [20]WU Lan, WU Yuanming, KONG Fanshi, LI Binquan. Traffic signal timing method based on deep reinforcement learning and extended Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1353-1363. doi: 10.13700/j.bh.1001-5965.2021.0529
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3518) PDF downloads(1025) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return