Citation: | Miao Xuewen, Hong Jie, Ma Yanhonget al. Grade-life model based on wavelet package and BP network for rolling bearing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(10): 1161-1165. (in Chinese) |
[1] Williams T, Ribadeneira X, Billingto S. Rolling element bearing diagnostics in run-to-failure life time testing [J]. Mechanical Systems and Signal Processing, 2001,15(5):979-993 [2] Lawley M, Liu R, Parmeshwaran V. Residual life predictions from vibration-based degradation signals: a neural network approach [J], IEEE Transactions on Industrial Electronics, 2004, 51(3):694-699 [3] Orsagh R, Roemer M, Sheldon J,et al. A comprehensive prognostic approach for predicting gas turbine engine bearing life Proceedings of ASME Turbo Expo. Vienna, Austria: ,2004:1-9 [4] Roemer M J, Byington C S. Prognostics and health management software for gas turbine engine bearings Proceedings of GT2007 ASME Turbo Expo, Montreal. Canada: ,2007:14-17 [5] Shao Y, Nezu K. Prognosis of remaining bearing life using neural networks[J]. Proc Instn Mech Engrs,2000,214(1):217-231 [6] Huang Runqing, Xia Lifeng, Li Xinglin, et al. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J]. Mechanical Systems and Signal Processing, 2007(21):193-207 [7] Harris T. Rolling bearing analysis[M]. New York: John Wiley & Sons,2001
|