Volume 35 Issue 8
Aug.  2009
Turn off MathJax
Article Contents
Cheng Dan, Yang Qin, Cai Qiang, et al. Delaunay triangulation and Voronoi diagrams for Riemannian manifolds[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8): 962-967. (in Chinese)
Citation: Cheng Dan, Yang Qin, Cai Qiang, et al. Delaunay triangulation and Voronoi diagrams for Riemannian manifolds[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8): 962-967. (in Chinese)

Delaunay triangulation and Voronoi diagrams for Riemannian manifolds

  • Received Date: 22 Dec 2008
  • Publish Date: 31 Aug 2009
  • Delaunay triangulation and Voronoi diagrams in Riemannian space were studied. Firstly, the existence and generation algorithm of Delaunay triangulation and Voronoi diagrams were discussed. Then on the basis of analysing the existed research achievements, some properties of Delaunay triangulation and Voronoi diagrams for Riemannian were given and proved. The necessities of describing object by Riemannian manifolds and advantages of researching Riemannian manifolds by charts were presented. Finally, taking 2-manifold as an example, the algorithm of getting Riemannian manifolds according to initial data of models was described, which included creating charts, defining functions of manifolds, and so on. The algorithm of creating Delaunay triangulation and Voronoi diagrams of models based on charts was presented, and some examples were provided.

     

  • loading
  • [1] Dirichlet G L. Vber die reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen[J]. Journal of fur die Reine und Angewandte Mathematik, 1850, 40(3):209-227 [2] Voronoi G F. Nouvelles applications des parameters continues la th orie des formes quadratiques[J]. J Reine Angew Math, 1908, 134:198-287 [3] Leibon G, Letscher D. Delaunay triangulations and Voronoi diagrams for Riemannian manifolds Proceedings of the Annual Symposium on Computational Geometry. New York:Association for Computing Machinery,2000:341-349 [4] Leibon G. Random Delaunay triangulations, the Thurston-Andreev theorem, and metric uniformization . California: Department of Mathematics, University of California San Diego, 1999 [5] Dyer R, Zhang H, Moller T. Voronoi-Delaunay duality and Delaunay meshes ACM Symposium on Solid and Physical Modeling. New York: Association for Computing Machinery, 2007:415-420 [6] Onishi K, Takayama N. Construction of Voronoi diagram on the upper half-plane[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 1996, E79-A (4):533-539 [7] Labelle F, Shewchuk J R. Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation Proceedings of the Annual Symposium on Computational Geometry. New York: ACM, 2003:191-200 [8] 陈维恒,李兴校.黎曼几何引论[M].北京:北京大学出版社, 2002 Cheng Weiheng, Li Xingxiao. An introduction to Riemannian Geometry[M]. Beijing:Peking University Press, 2002 (in Chinese) [9] Borouchaki H, George P L, Hecht F, et al. Delaunay mesh generation governed by metric specifications.Part I.Algorithms[J].Finite Elements in Analysis and Design,1997,25(1):61-83 [10] Jurczyk T, Glut B. Metric 3D surface mesh generation using Delaunay criteria Lecture Notes in Computer Science. Heidelberg, Germany:Springer Verlag,2006:302-309 [11] Borouchaki H, Laug P, George P L. Parametric surface meshing using a combined advancing-front generalized Delaunay approach[J]. International Journal for Numerical Methods in Engineering,2000,49(1):233-259 [12] Du Q, Wang D S. Anisotropic centroidal voronoi tessellations and their applications[J]. SIAM Journal of Scientific Computing,2005,26(3):737-761 [13] Kunze R, Wolter F E, Thomas R. Geodesic Voronoi diagrams on parametric surfaces Proceedings of Computer Graphics International Conference, CGI. Los Alamitos, CA:IEEE,1997:230-237 [14] 关振群,单菊林,顾元宪. 基于黎曼度量的复杂参数曲面有限元网格生成方法[J]. 计算机学报,2006,29(10):1828-1833 Guan Zhenqun,Shan Julin,Gu Yuanxian. Surface mesh generation based on Riemannian metric[J].Chinese Journal of Computers,2006,29(10):1828-1833(in Chinese) [15] Shimada K, Yamada A, Itoh T. Anisotropic triangulation of parametric surfaces via close packing of ellipsoids[J]. Int-l J Computational Geometry and Applications,2000,10(4):417-440 [16] Wu Mingha, Mo Guolang, Yu Yiye. Numerical solution of geodesic through two given points on a simple surface[J]. Journal of Zhejiang University: Science, 2006, 7(S2):187-192 [17] Grimm C M,Hughes J F.Modeling surfaces of arbitrary topology using manifolds Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. New York:ACM,1995:359-368 [18] Grimm C M, Zorin D. Surface modeling and parameterization with manifolds Siggraph 2006 Course Notes. New York:ACM,2006:1-81
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3460) PDF downloads(1398) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return