Citation: | Cheng Dan, Yang Qin, Cai Qiang, et al. Delaunay triangulation and Voronoi diagrams for Riemannian manifolds[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8): 962-967. (in Chinese) |
[1] Dirichlet G L. Vber die reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen[J]. Journal of fur die Reine und Angewandte Mathematik, 1850, 40(3):209-227 [2] Voronoi G F. Nouvelles applications des parameters continues la th orie des formes quadratiques[J]. J Reine Angew Math, 1908, 134:198-287 [3] Leibon G, Letscher D. Delaunay triangulations and Voronoi diagrams for Riemannian manifolds Proceedings of the Annual Symposium on Computational Geometry. New York:Association for Computing Machinery,2000:341-349 [4] Leibon G. Random Delaunay triangulations, the Thurston-Andreev theorem, and metric uniformization . California: Department of Mathematics, University of California San Diego, 1999 [5] Dyer R, Zhang H, Moller T. Voronoi-Delaunay duality and Delaunay meshes ACM Symposium on Solid and Physical Modeling. New York: Association for Computing Machinery, 2007:415-420 [6] Onishi K, Takayama N. Construction of Voronoi diagram on the upper half-plane[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 1996, E79-A (4):533-539 [7] Labelle F, Shewchuk J R. Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation Proceedings of the Annual Symposium on Computational Geometry. New York: ACM, 2003:191-200 [8] 陈维恒,李兴校.黎曼几何引论[M].北京:北京大学出版社, 2002 Cheng Weiheng, Li Xingxiao. An introduction to Riemannian Geometry[M]. Beijing:Peking University Press, 2002 (in Chinese) [9] Borouchaki H, George P L, Hecht F, et al. Delaunay mesh generation governed by metric specifications.Part I.Algorithms[J].Finite Elements in Analysis and Design,1997,25(1):61-83 [10] Jurczyk T, Glut B. Metric 3D surface mesh generation using Delaunay criteria Lecture Notes in Computer Science. Heidelberg, Germany:Springer Verlag,2006:302-309 [11] Borouchaki H, Laug P, George P L. Parametric surface meshing using a combined advancing-front generalized Delaunay approach[J]. International Journal for Numerical Methods in Engineering,2000,49(1):233-259 [12] Du Q, Wang D S. Anisotropic centroidal voronoi tessellations and their applications[J]. SIAM Journal of Scientific Computing,2005,26(3):737-761 [13] Kunze R, Wolter F E, Thomas R. Geodesic Voronoi diagrams on parametric surfaces Proceedings of Computer Graphics International Conference, CGI. Los Alamitos, CA:IEEE,1997:230-237 [14] 关振群,单菊林,顾元宪. 基于黎曼度量的复杂参数曲面有限元网格生成方法[J]. 计算机学报,2006,29(10):1828-1833 Guan Zhenqun,Shan Julin,Gu Yuanxian. Surface mesh generation based on Riemannian metric[J].Chinese Journal of Computers,2006,29(10):1828-1833(in Chinese) [15] Shimada K, Yamada A, Itoh T. Anisotropic triangulation of parametric surfaces via close packing of ellipsoids[J]. Int-l J Computational Geometry and Applications,2000,10(4):417-440 [16] Wu Mingha, Mo Guolang, Yu Yiye. Numerical solution of geodesic through two given points on a simple surface[J]. Journal of Zhejiang University: Science, 2006, 7(S2):187-192 [17] Grimm C M,Hughes J F.Modeling surfaces of arbitrary topology using manifolds Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. New York:ACM,1995:359-368 [18] Grimm C M, Zorin D. Surface modeling and parameterization with manifolds Siggraph 2006 Course Notes. New York:ACM,2006:1-81
|