Volume 35 Issue 6
Jun.  2009
Turn off MathJax
Article Contents
Wang Rui, Jiang Hongxu, Li Boet al. Novel optimized implementation of CABAC hardware encoder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6): 678-682. (in Chinese)
Citation: Wang Rui, Jiang Hongxu, Li Boet al. Novel optimized implementation of CABAC hardware encoder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(6): 678-682. (in Chinese)

Novel optimized implementation of CABAC hardware encoder

  • Received Date: 22 Apr 2008
  • Publish Date: 30 Jun 2009
  • To improve the throughput of hardware architecture for CABAC(context-based adaptive binary arithmetic coder), the optimization methods based on dynamic properties of dataflow were adopted. By building the dataflow model of CABAC algorithm, four inevitable loops brought by hardware implementation were abstracted and isolated, and the potential bottle-neck loops were examined and optimized. For the context-loop, three assistant sub-loops with different iteration cycle were used to update the context variables needed by the data elements with different dependency-cycle. For the byte-package loop, a special kind of data elements was discriminated, which could simplify the circuit architecture and speed up the clock frequency. By building a dedicated fast by-pass channel for these special data elements, the throughput of byte-package loop was improved. Also benefiting from other basic optimization methods, the entire CABAC hardware architecture could achieve 309 MHz on FPGA(field-programmable gate array) platform and process one binary symbol per clock cycle.

     

  • loading
  • [1] ISO/IEC 144962-10, Information technology coding of audio-visual objects part 10: advanced video coding [S][2] Marpe D, Schwartz H, Wiegand T. Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard [J]. IEEE Trans Circuits Syst Video Technol, 2003, 13(7): 620-636[3] Osorio R R, Bruguera J D. Arithmetic coding architecture for H.264/AVC CABAC compression system Proc EUROMICRO Syst Digit Syst Des. Los Alamitos: IEEE Computer Society, 2004:62-69 [4] Núez J L, Chouliaras V. High-performance arithmetic coding VLSI macro for the H.264 video compression standard [J]. IEEE Trans Consumer Electron, 2005, 51(1):144-151[5] Hassan S, Subramania S. A VLSI architecture for high performance CABAC encoding Li Shipeng. Visual Commun Image Process. Bellingham: SPIE, 2005: 1444-1454[6] Ha V H, Shim W S, Kim J W. Real-time MPEG-4 AVC/H.264 CABAC entropy coder 2005 Digest of Technical Papers-International Conference on Consumer Electronics. Piscataway: IEEE Inc, 2005:255-256 [7] Yang S, Takeshi I, Satoshi G. A CABAC encoding core with dynamic pipeline for H.264/AVC main profile //APCCAS 2006-2006 IEEE Asia Pacific Conference on Circuits and Systems. Piscataway: IEEE Inc,2006: 760-763[8] Osorio R R, Bruguera J D. High-throughput architecture for H.264/AVC CABAC compression system[J]. IEEE Trans Circuits Syst Video Technol, 2006, 16(11):1367-1384 [9] Xilinx Inc.Virtex-Ⅱ Complete data sheet .2007 .
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3562) PDF downloads(1753) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return