Volume 35 Issue 1
Jan.  2009
Turn off MathJax
Article Contents
Zhu Yunlong, Yang Dongkai, Liu Zhongkanet al. Filtering algorithm used for high dynamic GPS frequency estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(1): 23-27. (in Chinese)
Citation: Zhu Yunlong, Yang Dongkai, Liu Zhongkanet al. Filtering algorithm used for high dynamic GPS frequency estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(1): 23-27. (in Chinese)

Filtering algorithm used for high dynamic GPS frequency estimation

  • Received Date: 18 Jan 2008
  • Publish Date: 31 Jan 2009
  • Aiming at the drawbacks of the extended Kalman filter (EKF) which is the widely used GPS frequency estimation algorithm in high dynamic circumstance, a novel filtering algorithm called simplified unscented Gaussian particle filter (SUGPF) was proposed. The SUGPF is the combination of Kalman filter (KF), unscented Kalman filter (UKF) and Gaussian particle filter (GPF). In time update step, KF methodology was used to update the predictive distributions. In measurement update step, the UKF methodology was used to obtain the important sampling function, and the posterior distributions were updated by using the methodology of GPF. The simulation results indicate that the SUGPF has improved performance and versatility over the EKF and UKF, under both Gaussian and non-Gaussian observation noise condition, SUGPF can achieve good performance which is similar as that of the GPF, and the computational complexity of the SUGPF is lower than that of the GPF.

     

  • loading
  • [1] Vilnrotter V A, Hinedi S, Kumar R. Frequency estimation techniques for high dynamic trajectories[J]. IEEE Trans on Aerospace and Electronic Systems, 1989, 25(4):559-577 [2] Agurre S, Hinedi S. Two novel automatic frequency tracking loops[J]. IEEE Trans on Aerospace and Electronic Systems, 1989, 25(5):749-760 [3] Hurd W, Statman J I, Vilnrotter V A. High dynamic GPS receiver using maximum likelihood estimation and frequency tracking[J]. IEEE Trans on Aerospace and Electronic Systems, 1987, 23(4):425-436 [4] Kumar R. Fast frequency acquisition via adaptive least-square algorithm[J]. IEE Proceedings Pt F, 1989, 136(4): 155-160 [5] 李小民, 刘晖, 郑利龙, 等. 高动态环境扩频系统伪码延时的精确估计方法[J]. 北京航空航天大学学报, 2000, 26(2):129-132 Li Xiaomin, Liu Hui, Zheng Lilong, et al. Precise estimation method of pseudo-random code delay of spread spectrum system in high dynamic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2000, 26(2):129-132(in Chinese) [6] 胡士强,敬忠良. 粒子滤波算法综述[J]. 控制与决策,2005,20(4): 361-365 Hu Shiqiang, Jing Zhong liang. Overview of particle filter[J]. Control and Decision, 2005, 20(4): 361-365 (in Chinese) [7] Wan E A, Van Der Merwe R. The unscented Kalman filter for nonlinear estimation //Proceedings of IEEE Symposium 2000 on Adaptive Systems for Signal Processing, Communications and Control. Lake Louise: IEEE Standard Office, 2000: 153-158 [8] 刘旭,张其善,杨东凯. 一种用于GPS/DR组和定位的非线性滤波算法[J].北京航空航天大学学报, 2007, 33(2):184-187 Liu Xu, Zhang Qishan, Yang Dongkai. Nonlinear filter algorithm for GPS/DR integrated positioning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(2):184-187 (in Chinese) [9] Kotecha J H, Djuric P M. Gaussian particle filtering[J]. IEEE Trans on Signal Processing, 2003, 51(10): 2592-2601 [10] Zhuang W H, Tranquilla J. Digital baseband processor for the GPS receiver modeling and simulations[J]. IEEE Trans on Aerospace and Electronic Systems, 1993, 29(4):1343-1349 [11] Kotecha J H, Djuric P M. Gaussian sum particle filtering[J]. IEEE Trans on Signal Processing, 2003, 51(10):2602-2612
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3360) PDF downloads(1228) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return