Cao Long, Cao Yihua, Ma Chao, et al. Analysis on stability and structure computation of helicopter with slung-load[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(6): 711-714. (in Chinese)
Citation: Li Yuefei, Guo Junhong, Bai Chenggang, et al. Instrumentation in flight-control software testing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 580-583. (in Chinese)

Instrumentation in flight-control software testing

  • Received Date: 10 Aug 2008
  • Publish Date: 31 May 2009
  • Instrumentation is one of the important techniques in the software testing. When instrumentation was applied in the flight-control software testing, the real-time performance of the original software becomes bad even lead to failure of the software, due to the extra spending on the instrumentations. In view of this problem, a new instrumentation method which is based on the BOOL array used to storage the code information was presented. Compared with traditional methods, this new method not only optimizes the instrumentation contents but also reduces the real-time influence of the instrumentation on the original software. A simulation test platform was been set up and a certain type of flight control software was used as the test object. Then, plenty of experiments have been done to demonstrate the effect of the new instrumentation method. The result show that the method greatly reduces the run time of the instrumented program which to ensure the real-time requirements of the flight-control software.

     

  • [1] Chen Tsong Yueh, Kuo Fei Ching, Robert M. On the statistical properties of testing effectiveness measures[J]. Journal of Systems and Software , 2006,79(5):591-601 [2] Arnold M, Ryder B G. A framework for reducing the cost of instrumented code[J]. Acm Sigplan Notices ,2001,36(5):168-179 [3] Probert R L. Optimal insertion of software probes in well-delimited programs[J]. IEEE Transactions on Software Engineering, 1981, 8(1):34-42 [4] Agrawal H. Dominators, super blocks and program coverage Principles of Programming Languages. Portland: Acm Press, 1994:25-34 [5] Tikir M, Hollingsworth J. Efficient instrumentation for code coverage testing [J].Acm Sigsoft Software Engineering Note , 2002,27(4):86-96 [6] 孙昌爱, 靳若明, 刘超,等. 实时嵌入式软件的测试技术[J]. 小型微型计算机系统,2000,21(9): 920-924 Sun Changai, Jin Ruoming, Liu Chao, et al. Test technology of real-time and embedded software[J]. Mini-Micro System , 2000,21(9): 920-924(in Chinese) [7] Huang J C. Detection of data flow anomaly through program instrumentation[J]. IEEE Transactions on Software Engineering , 1979, SE5(3):226-236
  • Relative Articles

    [1]CHEN Bin, ZHU Qingmin, ZHUANG Qi, WANG Liwen. Mechanism of Aircraft Ground Icing and Staged Prediction Model[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0109
    [2]WANG Z,ZHONG W,WANG T G,et al. Numerical simulation of unsteady aerodynamic characteristics of parafoil airfoil[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1255-1266 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0184.
    [3]HU YaoWei, SHANG YunBin, HE Xi, YIN JinTao, JIANG ShengJu, LEI JuanMian. Wind Tunnel Experiment and Numerical Simulation on the Magnus Effect of Rotating Wing-body Combination[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0830
    [4]ZHANG P H,ZHOU G Y,SHEN Y Y,et al. Simulation of parallel separation characteristics using NNW-FlowStar software[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1620-1628 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0275.
    [5]ZHANG Xin-ze, LI Qin, WENG Yi-hui, YOU Yan-cheng. Numerical analysis and flow state prediction of double wedge steady/unsteady flow at different Ma、Re[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0758
    [6]HE Yan-tong, DENG Tian. Numerical Study of low-pressure modeling of bio-jet fuel combustion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0826
    [7]LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813.
    [8]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [9]LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693.
    [10]TANG Z Y,MA F Y,PEI Z C. Improved PSO-RBF neural network adaptive sliding mode control for quadrotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1563-1572 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0477.
    [11]WU X J,HAN X R,WU X L,et al. Prescribed performance control for quadrotor UAV with unknown kinetic parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2587-2595 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0714.
    [12]XIAO Wen-lei, LIU Qiang, WANG Liu-quan, ZANG Chen-xin, JING Ming-xia. Control system model of COVID-19 and its application in predicting the epidemic outbreak[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0663
    [13]XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494.
    [14]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [15]PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152.
    [16]HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335.
    [17]HUANG Mingqi, WANG Liangquan, YUAN Honggang, PENG Xianmin, ZHANG Guichuan. Icing wind tunnel investigation of helicopter rotor model in forward flight state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 929-936. doi: 10.13700/j.bh.1001-5965.2020.0703
    [18]GUO Qi, SHEN Xiaobin, LIN Guiping, ZHANG Shijuan. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081
    [19]WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
    [20]Xue Liangru, Wang Shaoping. Dynamics analysis and modeling of helicopter rotor test-bed[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3): 296-299.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3965) PDF downloads(1102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return