Citation: | Liu Rong, Tian Lin. Key factors analysis of wall-climbing robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(5): 608-611. (in Chinese) |
[1] Bin Ma, Rong Liu, Rong Zhang, et al. Design of wall climbing robots with transition capability Proceeding of 2007 IEEE International Conference on Robotics and Biomimetics. Sanya, China: IEEE, 2007:18715-1875 [2] Zhang Houxiang, Zhang Jianwei, Liu Rong, et al. Realization of a service robot for cleaning spherical surfaces[J]. International Journal of Advanced Robotic Systems, 2005, 12(1): 53-58 [3] Tang Zongjun, Chen Zhen, Dong Zaili, et al. Structure and control system design of a omni-directional wall-climbing robot[J]. Robot Technology, 2006, 1:33-35 [4] Wu Shanqiang, Li Mantian, Xiao Shu, et al. A wireless distributed wall climbing robotic system for reconnaissance purpose Procecding of the 2006 IEEE International Conference on Mechatronics and Automation. : IEEE, 2006, 1308-1302 [5] Li Xianbin. Development of a multifunctional mini negative Pressure wall-climbing robot . Beijing: School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, 2007 [6] Gui Zhongcheng, Chen Qiang, Sun Zhenguo,et al. Turning power losses in the wheeled locomotion mechanism for a wall climbing robot[J]. Tsinghua Univ(Sci & Tech), 2008, 48(2):161-164
|
[1] | HOU Z Q,ZHAO J X,CHEN Y,et al. Cascaded object drift determination network for long-term visual tracking[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2240-2252 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0504. |
[2] | WANG Z Y,YIN J H,HUANG B B,et al. A rotated content-aware retina network for SAR ship detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2498-2505 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0394. |
[3] | CHENG D Q,FAN S M,QIAN J S,et al. Coordinate-aware attention-based multi-frame self-supervised monocular depth estimation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2218-2228 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0417. |
[4] | BAI C P,ZHANG S Y,ZHANG X,et al. Spaceborne particle identification platform and application based on convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1313-1323 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0171. |
[5] | LIU Y N,ZHANG Q,WANG R,et al. Improved YOLOv7 method for aerial small target detection in aerial photography[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2506-2512 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0411. |
[6] | ZHANG Z,YI H H,ZHENG J. Few-shot object detection of aerial image based on language guidance vision[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2338-2348 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0491. |
[7] | ZHU J Z,WANG C,LI X K,et al. A deep reinforcement learning based on discrete state transition algorithm for solving fuzzy flexible job shop scheduling problem[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1385-1394 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0211. |
[8] | ZHANG D D,WANG C P,FU Q. Camouflaged object detection network based on human visual mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2553-2561 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0511. |
[9] | LU S Q,GUAN F X,LAI H T,et al. Two-stage underwater image enhancement method based on convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):321-332 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1003. |
[10] | MENG W J,AN W,MA S G,et al. An object detection algorithm based on feature enhancement and adaptive threshold non-maximum suppression[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2349-2359 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0534. |
[11] | CHAI G Q,BO X S,LIU H J,et al. Self-supervised scene depth estimation for monocular images based on uncertainty[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3780-3787 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0943. |
[12] | WANG J,LI P T,ZHAO R F,et al. A person re-identification method for fusing convolutional attention and Transformer architecture[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):466-476 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0456. |
[13] | HOU Z Q,MA J Y,HAN R X,et al. A fast long-term visual tracking algorithm based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2391-2403 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0645. |
[14] | LI Y H,YU H K,MA D F,et al. Improved transfer learning based dual-branch convolutional neural network image dehazing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):30-38 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0253. |
[15] | JIANG Y,CHEN M Y,YUAN Q,et al. Departure flight delay prediction based on spatio-temporal graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1044-1052 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0415. |
[16] | ZHOU H,HOU Q Y,BIAN C J,et al. An infrared small target detection network under various complex backgrounds realized on FPGA[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):295-310 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0221. |
[17] | DAI P Z,LIU X,ZHANG X,et al. An iterative pedestrian detection method sensitive to historical information features[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2493-2500 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0665. |
[18] | SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130. |
[19] | LI Zheyang, ZHANG Ruyi, TAN Wenming, REN Ye, LEI Ming, WU Hao. A graph convolution network based latency prediction algorithm for convolution neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2450-2459. doi: 10.13700/j.bh.1001-5965.2021.0149 |
[20] | HU Haimiao, SHEN Liuqing, GAO Likun, LI Mingzhu. Object detection algorithm guided by motion information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1710-1720. doi: 10.13700/j.bh.1001-5965.2022.0291 |