Citation: | Yin Jihao, Jiang Zhiguo, Fan Xiaozhonget al. Statistical language model adaptation based on N-gram distribution[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(11): 1276-1279. (in Chinese) |
[1] Jelinek F. Self-organized language modeling for speech recognition // Readings in Speech Recognition. Morgan-Kaufmann, CA: San Mateo, 1990: 450-506 [2] Miller D, Leek T, Schwartz RM. A hidden Markov model information retrieval system //Proceedings of 22nd International Conference on Research and Development in Information Retrieval. USA: Berkeley, 1999: 214-221 [3] Kim W. Language model adaptation for automatic speech recognition and statistical machine translation . USA: Department of Computer Science, Johns Hopkins University, 2004 [4] Iyer R, Ostendorf M, Gish H. Using out-of-domain data to improve in-domain language models[J]. IEEE Signal Processing Letters, 1997, 4(8): 221-223 [5] Rosenfeld R. A maximum entropy approach to adaptive statistical language model[J]. Computer Speech & Language, 1996, 10: 187-228 [6] Jurafsky D, Martin J H. Speech and language processing: an introduction to natural language processing, computational linguistics and speech recognition[M]. USA: Prentice Hall, 2000 [7] Katz S M. Estimation of probabilities from sparse data for the language model component of a speech recognizer[J]. IEEE Transaction Acoustics, Speech and Signal Processing, 1987, 35(3): 400-401 [8] Wu Genqing, Zheng Fang, Wu Wenhu. Improved Katz smoothing for language modeling in speech recognition //International Conference on Spoken Language Processing 2002. USA: Colorado, 2002: 925-928 [9] Manning C D, Sch tze H. Foundation of statistical natural language processing[M]. USA: The MIT Press, 1999 [10] Katz S M. Distribution of content words and phrases in text and language modeling[J]. Natural Language Engineering, 1996, 2: 15-59
|