Volume 35 Issue 2
Feb.  2009
Turn off MathJax
Article Contents
Qu Wenqing, Lu Jiehong, Zhuang Hongshouet al. Static tensile crack behavior of brazed joints of dissimilar metals tubes in aerospace system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 142-145. (in Chinese)
Citation: Qu Wenqing, Lu Jiehong, Zhuang Hongshouet al. Static tensile crack behavior of brazed joints of dissimilar metals tubes in aerospace system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2): 142-145. (in Chinese)

Static tensile crack behavior of brazed joints of dissimilar metals tubes in aerospace system

  • Received Date: 20 Jul 2008
  • Publish Date: 28 Feb 2009
  • The dissimilar metals(such as Titanium alloy and stainless steel) thin-wall small-diameter tube structrues in aerospace propulsion system were bonded, using high frequency induction brazing process. Their qualities and properties are largely superior to the bolt connection tubes structures. The static tensile experiments of the brazed joints were conducted. The results indicate that the mechanical properties of joints brazed using Ag-based filler metals are slightly better than those using Cu-based filler metals. And then the joints microstructures after static tensile experiments were analyzed. It is found that, all the cracks in the joint area brazed by Ag-based filler metals germinate and propagate in the brazing seam, the cracks stop when they propagate on the interfaces between brazing seam and the base metals. The cracks in the joint area brazed by Cu-based filler metals germinate in three locations: the boundary of two phases in the brazing seam, the interface between brazing seam and Titanium alloy, the interface between brazing seam and stainless steel. The crack driving force consistes mainly of the static tensile load and the mismatch behaviour of dissimilar metals brazed joint. And the resistance force of crack extension is related to the microstructures in the brazed joint.

     

  • loading
  • [1] 曲文卿, 王奇娟, 庄鸿寿,等. 异种金属管的真空钎焊 曹春晓. 第六届先进材料技术研讨会论文集(材料工程(增刊)). 北京: 材料工程杂志社,2002:s295-s298 Qu Wenqing, Wang Qijuan, Zhuang Hongshou,et al. Vacuum brazing of dissimilar metals tube Cao Chunxiao. Proceedings of 6th Advanced Material Technique Forum(Journal of Material Engineering (Supplement)). Beijing: Material Engineering Publisher, 2002:s295-s298 (in Chinese) [2] 薛忠明,王奇娟,曲文卿,等. 钛合金与不锈钢高频感应钎焊工艺试验研究[J]. 航天制造技术, 2004(6):31-35 Xue Zhongming, Wang Qijuan, Qu Wenqing, et al. Reserch on high-frequency inductive brazing process of different pipeline between Ti-Alloy and stainless steel[J]. Aerospace Manufacturing Technology,2004(6):31-35(in Chinese) [3] Bartlett A, Evans A G, Ruhle M. Residual stress cracking of metal/ceramic bonds[J]. Acta Metallurgica et Materialia,1991,39(7):1579-1585 [4] Fleck N A, Hutchinson J W, Suo Z. Crack path selection in a brittle adhesive layer[J]. International Journal of Solids Structures,1991,27(13):1683-1703 [5] Smith C, Bouchard J, Goldthorpe R, et al. Fracture margins for growing cracks in weld repairs Todd J A. Proceedings of the ASME Pressure Vessels and Piping Conference 2005-Materials and Fabrication. New York:American Society of Mechanical Engineers,2005,6: 371-383 [6] Siegele D, Varfolomeyev I, Nagel G. Brittle failure assessment of a PWR-RPV for operating conditions and loss of coolant accident[J]. Journal of Pressure Vessel Technology, Transactions of the ASME, 2008,130(3):0314031-0314038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3324) PDF downloads(1134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return