Volume 33 Issue 12
Dec.  2007
Turn off MathJax
Article Contents
Wang Zhaorui, Lü Shanwei, Nakamura Taketsuneet al. Synthesis algorithm of multifractional Brownian motion with wavelet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(12): 1417-1419. (in Chinese)
Citation: Wang Zhaorui, Lü Shanwei, Nakamura Taketsuneet al. Synthesis algorithm of multifractional Brownian motion with wavelet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(12): 1417-1419. (in Chinese)

Synthesis algorithm of multifractional Brownian motion with wavelet

  • Received Date: 31 Dec 2006
  • Publish Date: 31 Dec 2007
  • In practice, the signals being analyzed are often very far from regular or smooth, and these irregular signals usually have many non-differentiable points, even nowhere differentiable. To describe the signal whose pointwise singularity varies along the sample path, in terms of the concept of multifractal, a new algorithm based on discrete wavelet transform for synthesis of multifractional Brownian motion was proposed. The desired local regularity of the multifractional process was obtained by controlling the weights of the wavelet expansion of the Gaussian white noise. The convergence of the synthesized process was controlled by an experimental factor. Compared with both Durbin-Levinson model and circulant matrix embedding model, this algorithm is not only time saving, but also appropriate for generating the multifractional process that is non-Gaussian and autocovariance function unknown in advance. The validity and rationality were verified by numerical experiments.

     

  • loading
  • [1] Mandelbrot B B. The fractal geometry of nature (updated and augmented)[M]. New York: W H Freeman and Company, 1983: 1-20 [2] Bianchi G R, Vieira F H T, Ling L L. A novel network traffic predictor based on multifractal traffic characteristic Global Telecommunications Conference, GloBEcom-04 Proceedings. Texas, USA:IEEE, 2004:680-684 [3] Makowiec D, Dudkowska A. Scale invariant properties in heart rate signals [J]. ACTA Physica Polonica B, 2006, 37(5):1627-1639 [4] Grossmann A,Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape [J]. SIAM Journal on Mathematical Analysis, 1984, 15(4):723-736 [5] Mandelbrot B B, Van Ness J W. Fractional Brownian motions, fractional noises and applications [J]. SIAM Review, 1968, 10(4): 422-437 [6] Peltier R F, Levy Vehel J. Multifractional Brownian motion: definition and preliminary results . INRIA Research Report 2645, 1995 [7] Jaffard S. Functions with prescribed Hlder exponent [J]. Applied and Computational Harmonic Analysis, 1995, 2(4): 400-401 [8] Flandrin P. Wavelet analysis and synthesis of fractional Brownian motion [J]. IEEE Transactions on Information Theory, 1992, 38(2):910-917 [9] Pipiras V. Wavelet-based simulation of fractional Brownian motion revisited[J]. Applied and Computational Harmonic Analysis, 2005, 19(1):49-60 [10] Benassi A, Cohen S, Istas J. Identifying the multifractional function of a Gaussian process [J]. Statistics and Probability Letters, 1998, 39:337-345
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3311) PDF downloads(927) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return