Citation: | Wang Zhaorui, Lü Shanwei, Nakamura Taketsuneet al. Synthesis algorithm of multifractional Brownian motion with wavelet[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(12): 1417-1419. (in Chinese) |
[1] Mandelbrot B B. The fractal geometry of nature (updated and augmented)[M]. New York: W H Freeman and Company, 1983: 1-20 [2] Bianchi G R, Vieira F H T, Ling L L. A novel network traffic predictor based on multifractal traffic characteristic Global Telecommunications Conference, GloBEcom-04 Proceedings. Texas, USA:IEEE, 2004:680-684 [3] Makowiec D, Dudkowska A. Scale invariant properties in heart rate signals [J]. ACTA Physica Polonica B, 2006, 37(5):1627-1639 [4] Grossmann A,Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape [J]. SIAM Journal on Mathematical Analysis, 1984, 15(4):723-736 [5] Mandelbrot B B, Van Ness J W. Fractional Brownian motions, fractional noises and applications [J]. SIAM Review, 1968, 10(4): 422-437 [6] Peltier R F, Levy Vehel J. Multifractional Brownian motion: definition and preliminary results . INRIA Research Report 2645, 1995 [7] Jaffard S. Functions with prescribed Hlder exponent [J]. Applied and Computational Harmonic Analysis, 1995, 2(4): 400-401 [8] Flandrin P. Wavelet analysis and synthesis of fractional Brownian motion [J]. IEEE Transactions on Information Theory, 1992, 38(2):910-917 [9] Pipiras V. Wavelet-based simulation of fractional Brownian motion revisited[J]. Applied and Computational Harmonic Analysis, 2005, 19(1):49-60 [10] Benassi A, Cohen S, Istas J. Identifying the multifractional function of a Gaussian process [J]. Statistics and Probability Letters, 1998, 39:337-345
|