Li Bing, He Keqing, Liu Jin, et al. Research on Web information fusion infrastructure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(11): 1048-1051. (in Chinese)
Citation: Liu Jingyuan, Lee Chunhian. Comparison of two-equation turbulent models for hypersonic flow simulations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1131-1135. (in Chinese)

Comparison of two-equation turbulent models for hypersonic flow simulations

  • Received Date: 24 Oct 2006
  • Publish Date: 31 Oct 2007
  • A two-equation turbulent model based on the mixed Reynolds and Favré (density weighted) average was modified for hypersonic compressible turbulence. In order to suppress the influences of the numerical viscosity toward the boundary layer, and yet to maintain simultaneously the high resolution on capturing the disco ntinuities in the hypersonic flow field, a new entropy correction function was proposed for the total variation diminishing (TVD) scheme. A test case on hypersonic flows over a ramp was then computed using the modified mixed averaged model, as well as the incompressible models proposed by the others together with their respective compressibility correction models. The comparative study shows that the compressibility corrections to the two-equation turbulence models are necessary for hypersonic ramp-type flows, and the numerical results by the modified mixed averaged model are closest to the experiments simultaneously.

     

  • [1] Panaras A G. Review of the physics of swept-shock/boundary layer interactions[J]. Prog Aero Sci, 1996, 32:173-244 [2] Knight D, Yan H, Panarasb A G, et al. Advances in CFD prediction of shock wave turbulent boundary layer interactions[J]. Prog Aero Sci, 2003, 39:121-184 [3] Ristorcelli J R, Morrison J H. The Favr-Reynolds average distinction and a consistent gradient transport expression for the dissipation. ICASE-96-19, 1996 [4] Bertin J J, Cummings R M. Fifty years of hypersonics: where we've been, where we're going [J]. Prog Aero Sci, 2003, 39: 511-536 [5] Shyy W, Krishnamurty V S. Compressibility effects in modeling complex turbulent flows[J]. Prog Aero Sci, 1997, 33: 587-645 [6] Liu J Y, Lee C H. A two-equation model for high speed compressible turbulence Lee C H. East-West High Speed Flow Field Conference. Beijing: , 2005:422-437 [7] Grasso F, Falconi D. High-speed turbulence modeling of shock-wave/boundary-layer interaction[J]. AIAA J, 1993, 31(7): 1199-1206 [8] Chien K Y. Prediction of channel and boundary layer flows with a low Reynolds number turbulence model[J]. AlAA J, 1982, 20(1): 33-38 [9] Sinha K, Candler G V. Turbulent dissipation-rate equation for compressible flows[J]. AIAA J, 2003, 41(6): 1017-1021 [10] Chassaing P. The modeling of variable density turbulent flows - A review of first-order closure schemes[J]. Flow, Turbulence and Combustion, 2001, 66: 293-332 [11] Yee H C, Klopfer G H, Montagne J L. High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows[J]. J Comp Phys, 1990, 88: 31-61 [12] Zheng B, Lee C H. The effects of limiters on high resolution computations of hypersonic flows over bodies with complex shapes[J]. Comm Nonlin Sci Numer Simul, 1998, 3(2): 82-87 [13] Lee C H, Zheng B, Wu S P. Numerical computation of hypersonic flows over complex configuration. AIAA-99-3687, 1999 [14] 周伟江, 姜贵庆. 迎风TVD格式在粘性流计算中的应用研究与改进[J]. 计算物理, 1999, 16(4): 401-408 Zhou Weijiang, Jiang Guiqing. The study and modification of upwind TVD scheme for computing viscous flows[J]. Chinese J Comp Phys, 1999, 16(4): 401-408 (in Chinese) [15] Settles G S, Dodson L J. Hypersonic shock/boundary-layer interaction database. NASA-CR-177577, 1991
  • Relative Articles

    [1]LI F,LI Z H,CHEN A G. Boltzmann-Rykov model equation gas-kinetic unified algorithm and nozzle flow[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(2):553-562 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0054.
    [2]YANG Ling, ZENG Fei, WEN Jiongran, REN Qizhen, FEI Chengwei. LCF life reliability analysis method of turbine blisk based on intelligent learning[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2025.0030
    [3]ZHANG Ce, HUANG Hai, LIU Yu, LIU Shuan-jun. Design and analysis of a sleeve type spiral deployment coilable mast[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0642
    [4]WANG Kai, DANG Shuanghuan, LIU Kang, LI Yufang, CHEN Zhi. The influence of closed fuel tank pressure limitation on the nitrogen-enriched air demand[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024-0782
    [5]SHI T X,CHEN L S,LI T S,et al. Distributed adaptive anti-disturbance control for power systems based on multi-agents[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1685-1692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0496.
    [6]SHI Tong, HE Yunqin, LIANG Guozhu, PAN Hui, ZHU Pingping. Theoretic model of flow resistance for gas-filled accumulators in liquid rockets[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0748
    [7]TANG Zhanjun, ZHANG Chaojie, WANG Jian, LU Peng, LIU Huiyuan, JIAN Hong. Research on wind turbine blade defect detection based on improved Yolov7[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0228
    [8]TANG Y X,LIU Y M,AN Y F,et al. Flow mechanism of horseshoe vortex suction control for compressor cascade[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1282-1291 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0461.
    [9]WANG Y C,YIN Y,LIANG T T,et al. Taxiing deviation-correction control of a new variable-friction equipped-skid aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2527-2538 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0700.
    [10]SHI X S,LIN Z Y. Fixed-time distributed convex algorithm over second-order multi-agent systems under bounded disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2951-2959 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0060.
    [11]CHENG Z Y,YANG Y X,ZHANG X C,et al. Rapid evaluation method for aerodynamic characteristics of distributed electric propulsion aircraft concept scheme[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3047-3058 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0771.
    [12]CHENG Yi, ZHAO Jin-rui, HUANG Shui-lin, YU Zhi-hao, DENG Xu-dong. Research on dynamic characteristics of distributed multi-rotor/tilting wing aeroelastic coupling[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0253
    [13]XIAO R Y,YU J,MA Z X. Applicability of convolutional autoencoder in reduced-order model of unsteady compressible flows[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3445-3455 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0085.
    [14]CHEN Jing-yu, MA Jun, XIONG Xin, GUO Kai. Prediction method of rolling bearing performance degradation trend based on digital twin model[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0657
    [15]XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494.
    [16]CHANG Z M,LI L Y. Double-loop surrogate model for time-dependent reliability analysis based on NARX and Kriging models[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1802-1812 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0541.
    [17]FU J W,WANG C. Configuration and multibody separation scheme of compact missile swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1630-1638 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0508.
    [18]CHEN Z L,LU Z X,XIAO T H,et al. Effect of local oscillation on aerodynamics of thin airfoil in Mars environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2938-2950 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0032.
    [19]ZHENG Rao, CHEN Xiaozhu, LI Shuangxi, ZHAO Xiang, SHI Renjie, SONG Zifeng. Opening characteristics of inlaid floating ring seal with high-speed gas film[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2111-2120. doi: 10.13700/j.bh.1001-5965.2021.0083
    [20]KANG Rui, LIU Haoran, ZHANG Qingyuan, YU Li, ZHAI Guofu. Function oriented belief reliability design and optimization of new torsion spring electrical connectors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1745-1756. doi: 10.13700/j.bh.1001-5965.2022.0323
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2897) PDF downloads(1137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return